


The Digital hardware flow

Digital Hardware description

Y

o G

LUT




Issue
Digital Hardware description A

D oy

The digital hardware description is done by using VHDL or
Verilog

They are relatively low level
They are very verbose
They were not designed for this purpose



SpinalHDL introduction

Open source, started in december 2014
Focus on RTL description
Thinked to be interoperable with existing tools
It generates VHDL/Verilog files
Existing IPs can be integrated as blackboxes
Abstraction level :
You can design things similarly to VHDL/Verilog

If you want to, you can use many abstraction utilities and
also define new ones



Dedicated syntax

T—(+
False : 1 U : myRegisterWithReset
mySignal myRegister A
True " D QI—7

D Q
v cond =1E 4
end cond =|E 4 i
clk P ol %LR
reset EJ
Val mySlgnaI = BOOI signal mySignal : std logic;

signal myRegister : unsigned(3 downto 0);

val myRegister = Reg(UInt(4 bits)) Sl e e T
val myRegisterWithReset = Reg(Ulnt(4 bits)) init(0) S

my:Signadss<=-=“0u.
if cond = '1l' then

mySignal <= '1';
end if;

mySignaI := False end process;
When(Cond) { process (clk, reset)

begin
o if reset = '1l' then
mySIgnaI :_ True myRegisterWithReset <= 0;
= = elsif rising_edge(clk) then
® = if cond = '1l' then
myRegISter ~ myRengter + 1 myRegisterWithReset <= myRegisterWithReset + 1;
end if;

myRegisterWithReset := myRegisterWithReset + 1

end process;

} process (clk)
begin
if rising edge(clk) then
ARG O e A L ET)

myRegister <= myRegister + 1;

SpinalHDL => 10 lines end 1]

end if;

VHDL => 31 lines S raaas



Interface support

val config = Axi4Config(addressWidth
dataWidth
idWidth

val axiBus = Axi4(config)

SpinalHDL =>4 lines
=> 39 lines

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

axiBus_aw_valid

axiBus_aw_ready
axiBus_aw_addr
axiBus_aw_id

axiBus_aw_len
axiBus_aw_size
axiBus_aw burst
axiBus_aw_ lock
axiBus_aw_cache
axiBus_aw_qgos
axiBus_aw prot
axiBus_w_valid
axiBus_w_ready
axiBus_w_data
axiBus_w_strb
axiBus_w_last
axiBus_b valid
axiBus_b ready
axiBus_b id
axiBus_b resp

axiBus_ar valid

axiBus_ar ready
axiBus_ar addr
axiBus_ar_id

axiBus_ar_len
axiBus_ar_size
axiBus_ar_burst
axiBus_ar_lock
axiBus_ar_cache
axiBus_ar_gos
axiBus_ar_prot
axiBus_r valid
axiBus_r ready
axiBus_r data
axiBus_r id
axiBus_r_resp
axiBus_r_ last

std_logic;
std_logic;
unsigned (31 downto O0);

unsigned (3 downto 0);
axiBus_aw_region

std logic_vector (3 downto 0);

unsigned (7 downto 0);

unsigned (2 downto 0);
std logic_vector (1l downto 0);
std logic_vector (0 downto 0);
std logic_vector (3 downto 0);
std logic_vector (3 downto 0);
std logic_vector (2 downto 0);
(e aiole o elf]
std logic;
std logic_vector (31 downto 0);
std logic_vector (3 downto 0);
std logic;
std logic;
std logic;

unsigned (3 downto 0);

std logic_vector (1l downto 0);
std logic;
std logic;

unsigned (31 downto O0);

unsigned (3 downto 0);
axiBus_ar_region

std_logic_vector (3 downto 0);

unsigned (7 downto 0);

unsigned (2 downto 0);
std_logic_vector (1l downto 0);

std_logic_vector (0 downto 0);
std_logic_vector (3 downto 0);

std_logic_vector (3 downto 0);

std_logic_vector (2 downto 0);

std_logic;

std_logic;

std logic vector (31 downto 0);

unsigned (3 downto 0);

std logic_vector (1l downto 0);
std_logic;



Other features

A proper support of
Design parameterization
Functions definition
Many integrated checks
No latch
No combinatorial loops
No unwanted clock domain crossing
And also
Object Oriented programming
Functional programming
Possibility to define new abstraction level
Meta-hardware description capabilities
Free IDE to make things easier



The technology

SpinalHDL is an internal DSL (Domain Specific Language)
Advantages
All feature of the host language are inherited
All tools of the host language are inherited
It makes the SpinalHDL compiler simpler
Scala as host programming language
Flexible enough to have a natural syntax ! Scala
How it works
You compile and run your SpinalHDL hardware description
Each usage of SpinalHDL syntax contribute to build a netlist
Then this netlist go through some transformation and checks

Finally it is flushed into a VHDL or a Verilog file



Our buisness model

No fees to use the language
No licence
No royalties
We provide the commercial support
Presentation
Training
Consulting



Some links

Completely open source :
https://github.com/SpinalHDL/SpinalHDL Q

Online documentation :
https://spinalhdl.github.io/SpinalDoc/

Ready to use base project :
https://github.com/SpinalHDL/SpinalBaseProject

Communication channels :
spinalhdl@gmail.com

https://gitter.im/SpinalHDL/SpinalHDL m
https://github.com/SpinalHDL/SpinalHDL/issues

10


https://github.com/SpinalHDL/SpinalBaseProject
https://github.com/SpinalHDL/SpinalBaseProject
mailto:spinalhdl@gmail.com

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10

