
C++ Essentials

Sharam Hekmat
PragSoft Corporation

www.pragsoft.com

www.pragsoft.com Contents v

Contents

Contents v

Preface x

1. Preliminaries 1
A Simple C++ Program 2
Compiling a Simple C++ Program 3
How C++ Compilation Works 4
Variables 5
Simple Input/Output 7
Comments 9
Memory 10
Integer Numbers 11
Real Numbers 12
Characters 13
Strings 14
Names 15
Exercises 16

2. Expressions 17
Arithmetic Operators 18
Relational Operators 19
Logical Operators 20
Bitwise Operators 21
Increment/Decrement Operators 22
Assignment Operator 23
Conditional Operator 24
Comma Operator 25
The sizeof Operator 26
Operator Precedence 27
Simple Type Conversion 28
Exercises 29

vi C++ Essentials Copyright © 2005 PragSoft

3. Statements 30
Simple and Compound Statements 31
The if Statement 32
The switch Statement 34
The while Statement 36
The do Statement 37
The for Statement 38
The continue Statement 40
The break Statement 41
The goto Statement 42
The return Statement 43
Exercises 44

4. Functions 45
A Simple Function 46
Parameters and Arguments 48
Global and Local Scope 49
Scope Operator 50
Auto Variables 51
Register Variables 52
Static Variables and Functions 53
Extern Variables and Functions 54
Symbolic Constants 55
Enumerations 56
Runtime Stack 57
Inline Functions 58
Recursion 59
Default Arguments 60
Variable Number of Arguments 61
Command Line Arguments 63
Exercises 64

5. Arrays, Pointers, and References 65
Arrays 66
Multidimensional Arrays 68
Pointers 70
Dynamic Memory 71
Pointer Arithmetic 73
Function Pointers 75
References 77
Typedefs 79
Exercises 80

www.pragsoft.com Contents vii

6. Classes 82
A Simple Class 83
Inline Member Functions 85
Example: A Set Class 86
Constructors 90
Destructors 92
Friends 93
Default Arguments 95
Implicit Member Argument 96
Scope Operator 97
Member Initialization List 98
Constant Members 99
Static Members 101
Member Pointers 102
References Members 104
Class Object Members 105
Object Arrays 106
Class Scope 108
Structures and Unions 110
Bit Fields 112
Exercises 113

7. Overloading 115
Function Overloading 116
Operator Overloading 117
Example: Set Operators 119
Type Conversion 121
Example: Binary Number Class 124
Overloading << for Output 127
Overloading >> for Input 128
Overloading [] 129
Overloading () 131
Memberwise Initialization 133
Memberwise Assignment 135
Overloading new and delete 136
Overloading ->, *, and & 138
Overloading ++ and -- 142
Exercises 143

8. Derived Classes 145
An illustrative Class 146
A Simple Derived Class 150

viii C++ Essentials Copyright © 2005 PragSoft

Class Hierarchy Notation 152
Constructors and Destructors 153
Protected Class Members 154
Private, Public, and Protected Base Classes 155
Virtual Functions 156
Multiple Inheritance 158
Ambiguity 160
Type Conversion 161
Inheritance and Class Object Members 162
Virtual Base Classes 165
Overloaded Operators 167
Exercises 168

9. Templates 170
Function Template Definition 171
Function Template Instantiation 172
Example: Binary Search 174
Class Template Definition 176
Class Template Instantiation 177
Nontype Parameters 178
Class Template Specialization 179
Class Template Members 180
Class Template Friends 181
Example: Doubly-linked Lists 182
Derived Class Templates 186
Exercises 187

10. Exception Handling 188
Flow Control 189
The Throw Clause 190
The Try Block and Catch Clauses 192
Function Throw Lists 194
Exercises 195

11. The IO Library 196
The Role of streambuf 198
Stream Output with ostream 199
Stream Input with istream 201
Using the ios Class 204
Stream Manipulators 209
File IO with fstreams 210
Array IO with strstreams 212
Example: Program Annotation 214

www.pragsoft.com Contents ix

Exercises 217

12. The Preprocessor 218
Preprocessor Directives 219
Macro Definition 220
Quote and Concatenation Operators 222
File Inclusion 223
Conditional Compilation 224
Other Directives 226
Predefined Identifiers 227
Exercises 228

Solutions to Exercises 230

x C++ Essentials Copyright © 2005 PragSoft

Preface

Since its introduction less than a decade ago, C++ has experienced growing
acceptance as a practical object-oriented programming language suitable for
teaching, research, and commercial software development. The language has also
rapidly evolved during this period and acquired a number of new features (e.g.,
templates and exception handling) which have added to its richness.

This book serves as an introduction to the C++ language. It teaches how to
program in C++ and how to properly use its features. It does not attempt to teach
object-oriented design to any depth, which I believe is best covered in a book in its
own right.

In designing this book, I have strived to achieve three goals. First, to produce
a concise introductory text, free from unnecessary verbosity, so that beginners can
develop a good understanding of the language in a short period of time. Second, I
have tried to combine a tutorial style (based on explanation of concepts through
examples) with a reference style (based on a flat structure). As a result, each
chapter consists of a list of relatively short sections (mostly one or two pages), with
no further subdivision. This, I hope, further simplifies the reader’s task. Finally, I
have consciously avoided trying to present an absolutely complete description of
C++. While no important topic has been omitted, descriptions of some of the minor
idiosyncrasies have been avoided for the sake of clarity and to avoid
overwhelming beginners with too much information. Experience suggests that any
small knowledge gaps left as a result, will be easily filled over time through self-
discovery.

Intended Audience

This book introduces C++ as an object-oriented programming language. No
previous knowledge of C or any other programming language is assumed. Readers

www.pragsoft.com Contents xi

who have already been exposed to a high-level programming language (such as C
or Pascal) will be able to skip over some of the earlier material in this book.

Although the book is primarily designed for use in undergraduate computer
science courses, it will be equally useful to professional programmers and hobbyists
who intend to learn the language on their own. The entire book can be easily
covered in 10-15 lectures, making it suitable for a one-term or one-semester
course. It can also be used as the basis of an intensive 4-5 day industrial training
course.

Structure of the Book

The book is divided into 12 chapters. Each chapter has a flat structure, consisting
of an unnumbered sequence of sections, most of which are limited to one or two
pages. The aim is to present each new topic in a confined space so that it can be
quickly grasped. Each chapter ends with a list of exercises. Answers to all of the
exercises are provided in an appendix. Readers are encouraged to attempt as many
of the exercises as feasible and to compare their solutions against the ones
provided.

For the convenience of readers, the sample programs presented in this book
(including the solutions to the exercises) and provided in electronic form.

www.pragsoft.com Chapter 1: Preliminaries 1

1. Preliminaries

This chapter introduces the basic elements of a C++ program. We will use simple
examples to show the structure of C++ programs and the way they are compiled.
Elementary concepts such as constants, variables, and their storage in memory will
also be discussed.

The following is a cursory description of the concept of programming for the
benefit of those who are new to the subject.

Programming

A digital computer is a useful tool for solving a great variety of problems . A
solution to a problem is called an algorithm; it describes the sequence of steps to
be performed for the problem to be solved. A simple example of a problem and an
algorithm for it would be:

Problem: Sort a list of names in ascending lexicographic order.
Algorithm: Call the given list list1; create an empty list, list2, to hold the sorted list.

Repeatedly find the ‘smallest’ name in list1, remove it from list1, and
make it the next entry of list2, until list1 is empty.

An algorithm is expressed in abstract terms. To be intelligible to a computer, it
needs to be expressed in a language understood by it. The only language really
understood by a computer is its own machine language. Programs expressed in
the machine language are said to be executable. A program written in any other
language needs to be first translated to the machine language before it can be
executed.

A machine language is far too cryptic to be suitable for the direct use of
programmers. A further abstraction of this language is the assembly language
which provides mnemonic names for the instructions and a more intelligible notation
for the data. An assembly language program is translated to machine language by a
translator called an assembler.

Even assembly languages are difficult to work with. High-level languages such
as C++ provide a much more convenient notation for implementing algorithms.
They liberate programmers from having to think in very low-level terms, and help
them to focus on the algorithm instead. A program written in a high-level language
is translated to assembly language by a translator called a compiler. The assembly
code produced by the compiler is then assembled to produce an executable
program.

2 C++ Essentials Copyright © 2005 PragSoft

A Simple C++ Program

Listing 1.1 shows our first C++ program, which when run, simply outputs the
message Hello World.

Listing 1.1
1

2
3
4
5

#include <iostream.h>

int main (void)
{

cout << "Hello World\n";
}

Annotation

1 This line uses the preprocessor directive #include to include the contents
of the header file iostream.h in the program. Iostream.h is a standard
C++ header file and contains definitions for input and output.

2 This line defines a function called main. A function may have zero or more
parameters ; these always appear after the function name, between a pair of
brackets. The word void appearing between the brackets indicates that main
has no parameters. A function may also have a return type ; this always
appears before the function name. The return type for main is int (i.e., an
integer number). All C++ programs must have exactly one main function.
Program execution always begins from main.

3 This brace marks the beginning of the body of main.

4 This line is a statement. A statement is a computation step which may
produce a value. The end of a statement is always marked with a semicolon
(;). This statement causes the string "Hello World\n" to be sent to the
cout output stream. A string is any sequence of characters enclosed in
double-quotes. The last character in this string (\n) is a newline character
which is similar to a carriage return on a type writer. A stream is an object
which performs input or output. Cout is the standard output stream in C++
(standard output usually means your computer monitor screen). The symbol
<< is an output operator which takes an output stream as its left operand and
an expression as its right operand, and causes the value of the latter to be
sent to the former. In this case, the effect is that the string "Hello World\n"
is sent to cout, causing it to be printed on the computer monitor screen.

5 This brace marks the end of the body of main. ¨

www.pragsoft.com Chapter 1: Preliminaries 3

Compiling a Simple C++ Program

Dialog 1.1 shows how the program in Listing 1.1 is compiled and run in a typical
UNIX environment. User input appears in bold and system response in plain.
The UNIX command line prompt appears as a dollar symbol ($).

Dialog 1.1
1

 2
3
4

$ CC hello.cc
$ a.out
Hello World
$

Annotation

1 The command for invoking the AT&T C++ translator in a UNIX environment
is CC. The argument to this command (hello.cc) is the name of the file which
contains the program. As a convention, the file name should end in .c, .C, or
.cc. (This ending may be different in other systems.)

2 The result of compilation is an executable file which is by default named
a.out. To run the program, we just use a.out as a command.

3 This is the output produced by the program.

4 The return of the system prompt indicates that the program has completed its
execution.

The CC command accepts a variety of useful options. An option appears as -
name, where name is the name of the option (usually a single letter). Some options
take arguments. For example, the output option (-o) allows you to specify a name
for the executable file produced by the compiler instead of a.out. Dialog 1.Error!
Bookmark not defined. illustrates the use of this option by specifying hello as
the name of the executable file.

Dialog 1.2
1

 2
3
4

$ CC hello.cc -o hello
$ hello
Hello World
$

Although the actual command may be different depending on the make of the
compiler, a similar compilation procedure is used under MS-DOS. Windows-
based C++ compilers offer a user-friendly environment where compilation is as
simple as choosing a menu command. The naming convention under MS-DOS and
Windows is that C++ source file names should end in .cpp. ¨

4 C++ Essentials Copyright © 2005 PragSoft

How C++ Compilation Works

Compiling a C++ program involves a number of steps (most of which are
transparent to the user):

• First, the C++ preprocessor goes over the program text and carries out the
instructions specified by the preprocessor directives (e.g., #include). The
result is a modified program text which no longer contains any directives.
(Chapter 12 describes the preprocessor in detail.)

• Then, the C++ compiler translates the program code. The compiler may be a
true C++ compiler which generates native (assembly or machine) code, or just
a translator which translates the code into C. In the latter case, the resulting C
code is then passed through a C compiler to produce native object code. In
either case, the outcome may be incomplete due to the program referring to
library routines which are not defined as a part of the program. For example,
Listing 1.1 refers to the << operator which is actually defined in a separate IO
library.

• Finally, the linker completes the object code by linking it with the object code
of any library modules that the program may have referred to. The final result
is an executable file.

Figure 1.1 illustrates the above steps for both a C++ translator and a C++ native
compiler. In practice all these steps are usually invoked by a single command (e.g.,
CC) and the user will not even see the intermediate files generated.

Figure 1.1 C++ Compilation

C++
Program

C
Code

Object

Code

Execut-
able

C++

COMPILER
NATIVE

C++
TRANSLATOR

LINKER

C
COMPILER

C++

Program

¨

www.pragsoft.com Chapter 1: Preliminaries 5

Variables

A variable is a symbolic name for a memory location in which data can be stored
and subsequently recalled. Variables are used for holding data values so that they
can be utilized in various computations in a program. All variables have two
important attributes:

• A type which is established when the variable is defined (e.g., integer, real,
character). Once defined, the type of a C++ variable cannot be changed.

• A value which can be changed by assigning a new value to the variable. The
kind of values a variable can assume depends on its type. For example, an
integer variable can only take integer values (e.g., 2, 100, -12).

Listing 1.2 illustrates the uses of some simple variable.

Listing 1.2
1

2
3
4
5

6
7
8
9

10
11
12
13

#include <iostream.h>

int main (void)
{

int workDays;
float workHours, payRate, weeklyPay;

workDays = 5;
workHours = 7.5;
payRate = 38.55;
weeklyPay = workDays * workHours * payRate;
cout << "Weekly Pay = ";
cout << weeklyPay;
cout << '\n';

}

Annotation

4 This line defines an int (integer) variable called workDays, which will
represent the number of working days in a week. As a general rule, a variable
is defined by specifying its type first, followed by the variable name, followed
by a semicolon.

5 This line defines three float (real) variables which, respectively, represent the
work hours per day, the hourly pay rate, and the weekly pay. As illustrated by
this line, multiple variables of the same type can be defined at once by
separating them with commas.

6 This line is an assignment statement. It assigns the value 5 to the variable
workDays. Therefore, after this statement is executed, workDays denotes the
value 5.

7 This line assigns the value 7.5 to the variable workHours.

6 C++ Essentials Copyright © 2005 PragSoft

8 This line assigns the value 38.55 to the variable payRate.

9 This line calculates the weekly pay as the product of workDays, workHours,
and payRate (* is the multiplication operator). The resulting value is stored in
weeklyPay.

10-12 These lines output three items in sequence: the string "Weekly Pay = ",
the value of the variable weeklyPay, and a newline character.

When run, the program will produce the following output:

Weekly Pay = 1445.625

When a variable is defined, its value is undefined until it is actually assigned
one. For example, weeklyPay has an undefined value (i.e., whatever happens to
be in the memory location which the variable denotes at the time) until line 9 is
executed. The assigning of a value to a variable for the first time is called
initialization. It is important to ensure that a variable is initialized before it is used
in any computation.

It is possible to define a variable and initialize it at the same time. This is
considered a good programming practice, because it pre-empts the possibility of
using the variable prior to it being initialized. Listing 1.3 is a revised version of
Listing 1.2 which uses this technique. For all intents and purposes, the two
programs are equivalent.

Listing 1.3
1

2
3
4
5
6
7

8
9

10
11

#include <iostream.h>

int main (void)
{

int workDays = 5;
float workHours = 7.5;
float payRate = 38.55;
float weeklyPay = workDays * workHours * payRate;

cout << "Weekly Pay = ";
cout << weeklyPay;
cout << '\n';

}

¨

www.pragsoft.com Chapter 1: Preliminaries 7

Simple Input/Output

The most common way in which a program communicates with the outside world is
through simple, character-oriented Input/Output (IO) operations. C++ provides
two useful operators for this purpose: >> for input and << for output. We have
already seen examples of output using <<. Listing 1.4 also illustrates the use of >>
for input.

Listing 1.4
1

2
3
4
5
6

7
8

9
10
11
12
13

#include <iostream.h>

int main (void)
{

int workDays = 5;
float workHours = 7.5;
float payRate, weeklyPay;

cout << "What is the hourly pay rate? ";
cin >> payRate;

weeklyPay = workDays * workHours * payRate;
cout << "Weekly Pay = ";
cout << weeklyPay;
cout << '\n';

}

Annotation

7 This line outputs the prompt What is the hourly pay rate? to seek user
input.

8 This line reads the input value typed by the user and copies it to payRate. The
input operator >> takes an input stream as its left operand (cin is the
standard C++ input stream which corresponds to data entered via the
keyboard) and a variable (to which the input data is copied) as its right
operand.

9-13 The rest of the program is as before.

When run, the program will produce the following output (user input appears in
bold):

What is the hourly pay rate? 33.55
Weekly Pay = 1258.125

Both << and >> return their left operand as their result, enabling multiple input
or multiple output operations to be combined into one statement. This is illustrated
by Listing 1.5 which now allows the input of both the daily work hours and the
hourly pay rate.

8 C++ Essentials Copyright © 2005 PragSoft

Listing 1.5
1

2
3
4
5

6
7

8
9

10

#include <iostream.h>

int main (void)
{

int workDays = 5;
float workHours, payRate, weeklyPay;

cout << "What are the work hours and the hourly pay rate? ";
cin >> workHours >> payRate;

weeklyPay = workDays * workHours * payRate;
cout << "Weekly Pay = " << weeklyPay << '\n';

}

Annotation

7 This line reads two input values typed by the user and copies them to
workHours and payRate, respectively. The two values should be separated
by white space (i.e., one or more space or tab characters). This statement is
equivalent to:

(cin >> workHours) >> payRate;

Because the result of >> is its left operand, (cin >> workHours) evaluates
to cin which is then used as the left operand of the next >> operator.

9 This line is the result of combining lines 10-12 from Listing 1.4. It outputs
"Weekly Pay = ", followed by the value of weeklyPay, followed by a
newline character. This statement is equivalent to:

((cout << "Weekly Pay = ") << weeklyPay) << '\n';

Because the result of << is its left operand, (cout << "Weekly Pay = ")
evaluates to cout which is then used as the left operand of the next <<
operator, etc.

When run, the program will produce the following output:

What are the work hours and the hourly pay rate? 7.5 33.55
Weekly Pay = 1258.125

¨

www.pragsoft.com Chapter 1: Preliminaries 9

Comments

A comment is a piece of descriptive text which explains some aspect of a program.
Program comments are totally ignored by the compiler and are only intended for
human readers. C++ provides two types of comment delimiters:

• Anything after // (until the end of the line on which it appears) is considered a
comment.

• Anything enclosed by the pair /* and */ is considered a comment.

Listing 1.6 illustrates the use of both forms.

Listing 1.6
1

2
3
4

5
6
7
8
9

10

11
12
13

#include <iostream.h>

/* This program calculates the weekly gross pay for a worker,
 based on the total number of hours worked and the hourly pay
 rate. */

int main (void)
{

int workDays = 5; // Number of work days per week
float workHours = 7.5; // Number of work hours per day
float payRate = 33.50; // Hourly pay rate
float weeklyPay; // Gross weekly pay

weeklyPay = workDays * workHours * payRate;
cout << "Weekly Pay = " << weeklyPay << '\n';

}

Comments should be used to enhance (not to hinder) the readability of a
program. The following two points, in particular, should be noted:

• A comment should be easier to read and understand than the code which it
tries to explain. A confusing or unnecessarily-complex comment is worse than
no comment at all.

• Over-use of comments can lead to even less readability. A program which
contains so much comment that you can hardly see the code can by no means
be considered readable.

• Use of descriptive names for variables and other entities in a program, and
proper indentation of the code can reduce the need for using comments.

The best guideline for how to use comments is to simply apply common sense.
¨

10 C++ Essentials Copyright © 2005 PragSoft

Memory

A computer provides a Random Access Memory (RAM) for storing executable
program code as well as the data the program manipulates. This memory can be
thought of as a contiguous sequence of bits, each of which is capable of storing a
binary digit (0 or 1). Typically, the memory is also divided into groups of 8
consecutive bits (called bytes). The bytes are sequentially addressed. Therefore
each byte can be uniquely identified by its address (see Figure 1.2).

Figure 1.2 Bits and bytes in memory.

1211 1212 1213 1214 1215 1216 1217

1 1 0 1 0 0 0 1

Byte Byte Byte Byte Byte Byte Byte

Bit

Byte Address

... Memory...

The C++ compiler generates executable code which maps data entities to
memory locations. For example, the variable definition

int salary = 65000;

causes the compiler to allocate a few bytes to represent salary. The exact
number of bytes allocated and the method used for the binary representation of the
integer depends on the specific C++ implementation, but let us say two bytes
encoded as a 2’s complement integer. The compiler uses the address of the first
byte at which salary is allocated to refer to it. The above assignment causes the
value 65000 to be stored as a 2’s complement integer in the two bytes allocated
(see Figure 1.3).

Figure 1.3 Representation of an integer in memory.
1211 1212 1213 1214 1215 1216 1217

Byte Byte Byte Byte Byte ... Memory... 10110011 10110011
salary

(a two-byte integer whose address is 1214)

While the exact binary representation of a data item is rarely of interest to a
programmer, the general organization of memory and use of addresses for referring
to data items (as we will see later) is very important.

¨

www.pragsoft.com Chapter 1: Preliminaries 11

Integer Numbers

An integer variable may be defined to be of type short, int, or long. The only
difference is that an int uses more or at least the same number of bytes as a
short, and a long uses more or at least the same number of bytes as an int. For
example, on the author’s PC, a short uses 2 bytes, an int also 2 bytes, and a
long 4 bytes.

short age = 20;
int salary = 65000;
long price = 4500000;

By default, an integer variable is assumed to be signed (i.e., have a signed
representation so that it can assume positive as well as negative values). However,
an integer can be defined to be unsigned by using the keyword unsigned in its
definition. The keyword signed is also allowed but is redundant.

unsigned short age = 20;
unsigned int salary = 65000;
unsigned long price = 4500000;

A literal integer (e.g., 1984) is always assumed to be of type int, unless it
has an L or l suffix, in which case it is treated as a long. Also, a literal integer can
be specified to be unsigned using the suffix U or u. For example:

1984L 1984l 1984U 1984u 1984LU 1984ul

Literal integers can be expressed in decimal, octal, and hexadecimal notations.
The decimal notation is the one we have been using so far. An integer is taken to be
octal if it is preceded by a zero (0), and hexadecimal if it is preceded by a 0x or
0X. For example:

92 // decimal
0134 // equivalent octal
0x5C // equivalent hexadecimal

Octal numbers use the base 8, and can therefore only use the digits 0-7.
Hexadecimal numbers use the base 16, and therefore use the letter A-F (or a-f) to
represent, respectively, 10-15. Octal and hexadecimal numbers are calculated as
follows:

0134 = 1 × 82 + 3 × 81 + 4 × 80 = 64 + 24 + 4 = 92
0x5C = 5 × 161 + 12 × 160 = 80 + 12 = 92

¨

12 C++ Essentials Copyright © 2005 PragSoft

Real Numbers

A real variable may be defined to be of type float or double. The latter uses
more bytes and therefore offers a greater range and accuracy for representing real
numbers. For example, on the author’s PC, a float uses 4 and a double uses 8
bytes.

float interestRate = 0.06;
double pi = 3.141592654;

A literal real (e.g., 0.06) is always assumed to be of type double, unless it has
an F or f suffix, in which case it is treated as a float, or an L or l suffix, in which
case it is treated as a long double. The latter uses more bytes than a double for
better accuracy (e.g., 10 bytes on the author’s PC). For example:

0.06F 0.06f 3.141592654L 3.141592654l

In addition to the decimal notation used so far, literal reals may also be
expressed in scientific notation. For example, 0.002164 may be written in the
scientific notation as:

2.164E-3 or 2.164e-3

The letter E (or e) stands for exponent. The scientific notation is interpreted as
follows:

2.164E-3 = 2.164 × 10-3

¨

www.pragsoft.com Chapter 1: Preliminaries 13

Characters

A character variable is defined to be of type char. A character variable
occupies a single byte which contains the code for the character. This code is a
numeric value and depends on the character coding system being used (i.e., is
machine-dependent). The most common system is ASCII (American Standard
Code for Information Interchange). For example, the character A has the ASCII
code 65, and the character a has the ASCII code 97.

char ch = 'A';

Like integers, a character variable may be specified to be signed or unsigned.
By the default (on most systems) char means signed char. However, on some
systems it may mean unsigned char. A signed character variable can hold
numeric values in the range -128 through 127. An unsigned character variable can
hold numeric values in the range 0 through 255. As a result, both are often used to
represent small integers in programs (and can be assigned numeric values like
integers):

signed char offset = -88;
unsigned char row = 2, column = 26;

A literal character is written by enclosing the character between a pair of
single quotes (e.g., 'A'). Nonprintable characters are represented using escape
sequences. For example:

'\n' // new line
'\r' // carriage return
'\t' // horizontal tab
'\v' // vertical tab
'\b' // backspace
'\f' // formfeed

Single and double quotes and the backslash character can also use the escape
notation:

'\'' // single quote (')
'\"' // double quote (")
'\\' // backslash (\)

Literal characters may also be specified using their numeric code value. The
general escape sequence \ooo (i.e., a backslash followed by up to three octal
digits) is used for this purpose. For example (assuming ASCII):

'\12' // newline (decimal code = 10)
'\11' // horizontal tab (decimal code = 9)
'\101' // 'A' (decimal code = 65)
'\0' // null (decimal code = 0)

¨

14 C++ Essentials Copyright © 2005 PragSoft

Strings

A string is a consecutive sequence (i.e., array) of characters which are terminated
by a null character. A string variable is defined to be of type char* (i.e., a
pointer to character). A pointer is simply the address of a memory location.
(Pointers will be discussed in Chapter 5). A string variable, therefore, simply
contains the address of where the first character of a string appears. For example,
consider the definition:

char *str = "HELLO";

Figure 1.4 illustrates how the string variable str and the string "HELLO" might
appear in memory.

Figure 1.4 A string and a string variable in memory.
1211 1212 1213 1214 1215 1216 1217

... 'H' 'E' 'L' 'L' 'O' '\0'
1210120912081207 1218

1212
str

...

A literal string is written by enclosing its characters between a pair of double
quotes (e.g., "HELLO"). The compiler always appends a null character to a literal
string to mark its end. The characters of a string may be specified using any of the
notations for specifying literal characters. For example:

"Name\tAddress\tTelephone" // tab-separated words
"ASCII character 65: \101" // 'A' specified as '101'

A long string may extend beyond a single line, in which case each of the
preceding lines should be terminated by a backslash. For example:

"Example to show \
the use of backslash for \
writing a long string"

The backslash in this context means that the rest of the string is continued on the
next line. The above string is equivalent to the single line string:

"Example to show the use of backslash for writing a long string"

A common programming error results from confusing a single-character string
(e.g., "A") with a single character (e.g., 'A'). These two are not equivalent. The
former consists of two bytes (the character 'A' followed by the character '\0'),
whereas the latter consists of a single byte.

The shortest possible string is the null string ("") which simply consists of the
null character. ¨

www.pragsoft.com Chapter 1: Preliminaries 15

Names

Programming languages use names to refer to the various entities that make up a
program. We have already seen examples of an important category of such names
(i.e., variable names). Other categories include: function names, type names, and
macro names, which will be described later in this book.

Names are a programming convenience, which allow the programmer to
organize what would otherwise be quantities of plain data into a meaningful and
human-readable collection. As a result, no trace of a name is left in the final
executable code generated by a compiler. For example, a temperature variable
eventually becomes a few bytes of memory which is referred to by the executable
code by its address, not its name.

C++ imposes the following rules for creating valid names (also called
identifiers). A name should consist of one or more characters, each of which may
be a letter (i.e., 'A'-'Z' and 'a'-'z'), a digit (i.e., '0'-'9'), or an underscore character
('_'), except that the first character may not be a digit. Upper and lower case letters
are distinct. For example:

salary // valid identifier
salary2 // valid identifier
2salary // invalid identifier (begins with a digit)
_salary // valid identifier
Salary // valid but distinct from salary

C++ imposes no limit on the number of characters in an identifier. However,
most implementation do. But the limit is usually so large that it should not cause a
concern (e.g., 255 characters).

Certain words are reserved by C++ for specific purposes and may not be
used as identifiers. These are called reserved words or keywords and are
summarized in Table 1.1:

Table 1.1 C++ keywords.

asm continue float new signed try

auto default for operator sizeof typedef

break delete friend private static union

case do goto protected struct unsigned

catch double if public switch virtual

char else inline register template void

class enum int return this volatile

const extern long short throw while

¨

16 C++ Essentials Copyright © 2005 PragSoft

Exercises

1.1 Write a program which inputs a temperature reading expressed in Fahrenheit and
outputs its equivalent in Celsius, using the formula:

° = ° −C F
5
9

32()

Compile and run the program. Its behavior should resemble this:

Temperature in Fahrenheit: 41
41 degrees Fahrenheit = 5 degrees Celsius

1.2 Which of the following represent valid variable definitions?

int n = -100;
unsigned int i = -100;
signed int = 2.9;
long m = 2, p = 4;
int 2k;
double x = 2 * m;
float y = y * 2;
unsigned double z = 0.0;
double d = 0.67F;
float f = 0.52L;
signed char = -1786;
char c = '$' + 2;
sign char h = '\111';
char *name = "Peter Pan";
unsigned char *num = "276811";

1.3 Which of the following represent valid identifiers?

identifier
seven_11
unique
gross-income
gross$income
2by2
default
average_weight_of_a_large_pizza
variable
object.oriented

1.4 Define variables to represent the following entities:

• Age of a person.

• Income of an employee.

• Number of words in a dictionary.

• A letter of the alphabet.

• A greeting message. ¨

www.pragsoft.com Chapter 2: Expressions 17

2. Expressions

This chapter introduces the built-in C++ operators for composing expressions. An
expression is any computation which yields a value.

When discussing expressions, we often use the term evaluation. For example,
we say that an expression evaluates to a certain value. Usually the final value is the
only reason for evaluating the expression. However, in some cases, the expression
may also produce side-effects. These are permanent changes in the program
state. In this sense, C++ expressions are different from mathematical expressions.

C++ provides operators for composing arithmetic, relational, logical, bitwise,
and conditional expressions. It also provides operators which produce useful side-
effects, such as assignment, increment, and decrement. We will look at each
category of operators in turn. We will also discuss the precedence rules which
govern the order of operator evaluation in a multi-operator expression.

18 C++ Essentials Copyright © 2005 PragSoft

Arithmetic Operators

C++ provides five basic arithmetic operators. These are summarized in Table 2.2.

Table 2.2 Arithmetic operators.
Operator Name Example

+ Addition 12 + 4.9 // gives 16.9
- Subtraction 3.98 - 4 // gives -0.02
* Multiplication 2 * 3.4 // gives 6.8
/ Division 9 / 2.0 // gives 4.5
% Remainder 13 % 3 // gives 1

Except for remainder (%) all other arithmetic operators can accept a mix of
integer and real operands. Generally, if both operands are integers then the result
will be an integer. However, if one or both of the operands are reals then the result
will be a real (or double to be exact).

When both operands of the division operator (/) are integers then the division
is performed as an integer division and not the normal division we are used to.
Integer division always results in an integer outcome (i.e., the result is always
rounded down). For example:

9 / 2 // gives 4, not 4.5!
-9 / 2 // gives -5, not -4!

Unintended integer divisions are a common source of programming errors. To
obtain a real division when both operands are integers, you should cast one of the
operands to be real:

int cost = 100;
int volume = 80;
double unitPrice = cost / (double) volume; // gives 1.25

The remainder operator (%) expects integers for both of its operands. It returns
the remainder of integer-dividing the operands. For example 13%3 is calculated by
integer dividing 13 by 3 to give an outcome of 4 and a remainder of 1; the result is
therefore 1.

It is possible for the outcome of an arithmetic operation to be too large for
storing in a designated variable. This situation is called an overflow. The outcome
of an overflow is machine-dependent and therefore undefined. For example:

unsigned char k = 10 * 92; // overflow: 920 > 255

It is illegal to divide a number by zero. This results in a run-time division-by-
zero failure which typically causes the program to terminate. ¨

www.pragsoft.com Chapter 2: Expressions 19

Relational Operators

C++ provides six relational operators for comparing numeric quantities. These are
summarized in Table 2.3. Relational operators evaluate to 1 (representing the true
outcome) or 0 (representing the false outcome).

Table 2.3 Relational operators.
Operator Name Example

== Equality 5 == 5 // gives 1
!= Inequality 5 != 5 // gives 0
< Less Than 5 < 5.5 // gives 1
<= Less Than or Equal 5 <= 5 // gives 1
> Greater Than 5 > 5.5 // gives 0
>= Greater Than or Equal 6.3 >= 5 // gives 1

Note that the <= and >= operators are only supported in the form shown. In
particular, =< and => are both invalid and do not mean anything.

The operands of a relational operator must evaluate to a number. Characters
are valid operands since they are represented by numeric values. For example
(assuming ASCII coding):

'A' < 'F' // gives 1 (is like 65 < 70)

The relational operators should not be used for comparing strings, because this
will result in the string addresses being compared, not the string contents. For
example, the expression

"HELLO" < "BYE"

causes the address of "HELLO" to be compared to the address of "BYE". As these
addresses are determined by the compiler (in a machine-dependent manner), the
outcome may be 0 or may be 1, and is therefore undefined.

C++ provides library functions (e.g., strcmp) for the lexicographic
comparison of string. These will be described later in the book.

¨

20 C++ Essentials Copyright © 2005 PragSoft

Logical Operators

C++ provides three logical operators for combining logical expression. These are
summarized in Table 2.4. Like the relational operators, logical operators evaluate
to 1 or 0.

Table 2.4 Logical operators.
Operator Name Example

! Logical Negation !(5 == 5) // gives 0
&& Logical And 5 < 6 && 6 < 6 // gives 1
|| Logical Or 5 < 6 || 6 < 5 // gives 1

Logical negation is a unary operator, which negates the logical value of its
single operand. If its operand is nonzero it produce 0, and if it is 0 it produces 1.

Logical and produces 0 if one or both of its operands evaluate to 0.
Otherwise, it produces 1. Logical or produces 0 if both of its operands evaluate to
0. Otherwise, it produces 1.

Note that here we talk of zero and nonzero operands (not zero and 1). In
general, any nonzero value can be used to represent the logical true, whereas only
zero represents the logical false. The following are, therefore, all valid logical
expressions:

!20 // gives 0
10 && 5 // gives 1
10 || 5.5 // gives 1
10 && 0 // gives 0

C++ does not have a built-in boolean type. It is customary to use the type int
for this purpose instead. For example:

int sorted = 0; // false
int balanced = 1; // true

¨

www.pragsoft.com Chapter 2: Expressions 21

Bitwise Operators

C++ provides six bitwise operators for manipulating the individual bits in an integer
quantity. These are summarized in Table 2.5.

Table 2.5 Bitwise operators.
Operator Name Example

~ Bitwise Negation ~'\011' // gives '\366'
& Bitwise And '\011' & '\027' // gives '\001'
| Bitwise Or '\011' | '\027' // gives '\037'
^ Bitwise Exclusive Or '\011' ^ '\027' // gives '\036'
<< Bitwise Left Shift '\011' << 2 // gives '\044'
>> Bitwise Right Shift '\011' >> 2 // gives '\002'

Bitwise operators expect their operands to be integer quantities and treat them
as bit sequences. Bitwise negation is a unary operator which reverses the bits in its
operands. Bitwise and compares the corresponding bits of its operands and
produces a 1 when both bits are 1, and 0 otherwise. Bitwise or compares the
corresponding bits of its operands and produces a 0 when both bits are 0, and 1
otherwise. Bitwise exclusive or compares the corresponding bits of its operands
and produces a 0 when both bits are 1 or both bits are 0, and 1 otherwise.

Bitwise left shift operator and bitwise right shift operator both take a bit
sequence as their left operand and a positive integer quantity n as their right
operand. The former produces a bit sequence equal to the left operand but which
has been shifted n bit positions to the left. The latter produces a bit sequence equal
to the left operand but which has been shifted n bit positions to the right. Vacated
bits at either end are set to 0.

Table 2.6 illustrates bit sequences for the sample operands and results in Table
2.5. To avoid worrying about the sign bit (which is machine dependent), it is
common to declare a bit sequence as an unsigned quantity:

unsigned char x = '\011';
unsigned char y = '\027';

Table 2.6 How the bits are calculated.
Example Octal Value Bit Sequence

x 011 0 0 0 0 1 0 0 1
y 027 0 0 0 1 0 1 1 1
~x 366 1 1 1 1 0 1 1 0

x & y 001 0 0 0 0 0 0 0 1
x | y 037 0 0 0 1 1 1 1 1
x ^ y 036 0 0 0 1 1 1 1 0
x << 2 044 0 0 1 0 0 1 0 0
x >> 2 002 0 0 0 0 0 0 1 0

¨

22 C++ Essentials Copyright © 2005 PragSoft

Increment/Decrement Operators

The auto increment (++) and auto decrement (--) operators provide a
convenient way of, respectively, adding and subtracting 1 from a numeric variable.
These are summarized in Table 2.7. The examples assume the following variable
definition:

int k = 5;

Table 2.7 Increment and decrement operators.
Operator Name Example

++ Auto Increment (prefix) ++k + 10 // gives 16
++ Auto Increment (postfix) k++ + 10 // gives 15
-- Auto Decrement (prefix) --k + 10 // gives 14
-- Auto Decrement (postfix) k-- + 10 // gives 15

Both operators can be used in prefix and postfix form. The difference is
significant. When used in prefix form, the operator is first applied and the outcome
is then used in the expression. When used in the postfix form, the expression is
evaluated first and then the operator applied.

Both operators may be applied to integer as well as real variables, although in
practice real variables are rarely useful in this form.

¨

www.pragsoft.com Chapter 2: Expressions 23

Assignment Operator

The assignment operator is used for storing a value at some memory location
(typically denoted by a variable). Its left operand should be an lvalue, and its right
operand may be an arbitrary expression. The latter is evaluated and the outcome is
stored in the location denoted by the lvalue.

An lvalue (standing for left value) is anything that denotes a memory location
in which a value may be stored. The only kind of lvalue we have seen so far in this
book is a variable. Other kinds of lvalues (based on pointers and references) will
be described later in this book.

The assignment operator has a number of variants, obtained by combining it
with the arithmetic and bitwise operators. These are summarized in Table 2.8. The
examples assume that n is an integer variable.

Table 2.8 Assignment operators.
Operator Example Equivalent To

= n = 25
+= n += 25 n = n + 25
-= n -= 25 n = n - 25
*= n *= 25 n = n * 25
/= n /= 25 n = n / 25
%= n %= 25 n = n % 25
&= n &= 0xF2F2 n = n & 0xF2F2
|= n |= 0xF2F2 n = n | 0xF2F2
^= n ^= 0xF2F2 n = n ^ 0xF2F2
<<= n <<= 4 n = n << 4
>>= n >>= 4 n = n >> 4

An assignment operation is itself an expression whose value is the value stored
in its left operand. An assignment operation can therefore be used as the right
operand of another assignment operation. Any number of assignments can be
concatenated in this fashion to form one expression. For example:

int m, n, p;
m = n = p = 100; // means: n = (m = (p = 100));
m = (n = p = 100) + 2; // means: m = (n = (p = 100)) + 2;

This is equally applicable to other forms of assignment. For example:

m = 100;
m += n = p = 10; // means: m = m + (n = p = 10);

¨

24 C++ Essentials Copyright © 2005 PragSoft

Conditional Operator

The conditional operator takes three operands. It has the general form:

operand1 ? operand2 : operand3

First operand1 is evaluated, which is treated as a logical condition. If the result is
nonzero then operand2 is evaluated and its value is the final result. Otherwise,
operand3 is evaluated and its value is the final result. For example:

int m = 1, n = 2;
int min = (m < n ? m : n); // min receives 1

Note that of the second and the third operands of the conditional operator
only one is evaluated. This may be significant when one or both contain side-effects
(i.e., their evaluation causes a change to the value of a variable). For example, in

int min = (m < n ? m++ : n++);

m is incremented because m++ is evaluated but n is not incremented because n++
is not evaluated.

Because a conditional operation is itself an expression, it may be used as an
operand of another conditional operation, that is, conditional expressions may be
nested. For example:

int m = 1, n = 2, p =3;
int min = (m < n ? (m < p ? m : p)

 : (n < p ? n : p));
¨

www.pragsoft.com Chapter 2: Expressions 25

Comma Operator

Multiple expressions can be combined into one expression using the comma
operator. The comma operator takes two operands. It first evaluates the left
operand and then the right operand, and returns the value of the latter as the final
outcome. For example:

int m, n, min;
int mCount = 0, nCount = 0;
//...
min = (m < n ? mCount++, m : nCount++, n);

Here when m is less than n, mCount++ is evaluated and the value of m is stored in
min. Otherwise, nCount++ is evaluated and the value of n is stored in min.

¨

26 C++ Essentials Copyright © 2005 PragSoft

The sizeof Operator

C++ provides a useful operator, sizeof, for calculating the size of any data item
or type. It takes a single operand which may be a type name (e.g., int) or an
expression (e.g., 100) and returns the size of the specified entity in bytes. The
outcome is totally machine-dependent. Listing 2.7 illustrates the use of sizeof on the
built-in types we have encountered so far.

Listing 2.7
1

2
3
4
5
6
7
8
9

10

11
12
13
14

#include <iostream.h>

int main (void)
{

cout << "char size = " << sizeof(char) << " bytes\n";
cout << "char* size = " << sizeof(char*) << " bytes\n";
cout << "short size = " << sizeof(short) << " bytes\n";
cout << "int size = " << sizeof(int) << " bytes\n";
cout << "long size = " << sizeof(long) << " bytes\n";
cout << "float size = " << sizeof(float) << " bytes\n";
cout << "double size = " << sizeof(double) << " bytes\n";

 cout << "1.55 size = " << sizeof(1.55) << " bytes\n";
cout << "1.55L size = " << sizeof(1.55L) << " bytes\n";
cout << "HELLO size = " << sizeof("HELLO") << " bytes\n";

}

When run, the program will produce the following output (on the author’s PC):

char size = 1 bytes
char* size = 2 bytes
short size = 2 bytes
int size = 2 bytes
long size = 4 bytes
float size = 4 bytes
double size = 8 bytes
1.55 size = 8 bytes
1.55L size = 10 bytes
HELLO size = 6 bytes

¨

www.pragsoft.com Chapter 2: Expressions 27

Operator Precedence

The order in which operators are evaluated in an expression is significant and is
determined by precedence rules. These rules divide the C++ operators into a
number of precedence levels (see Table 2.9). Operators in higher levels take
precedence over operators in lower levels.

Table 2.9 Operator precedence levels.
Level Operator Kind Order

Highest :: Unary Both
() [] -> . Binary Left to Right
+
-

++
--

!
~

*
&

new
delete

sizeof
() Unary Right to Left

->* .* Binary Left to Right
* / % Binary Left to Right
+ - Binary Left to Right
<< >> Binary Left to Right
< <= > >= Binary Left to Right
== != Binary Left to Right
& Binary Left to Right
^ Binary Left to Right
| Binary Left to Right
&& Binary Left to Right
|| Binary Left to Right
? : Ternary Left to Right
= +=

-=
*=
/=

^=
%=

&=
|=

<<=
>>= Binary Right to Left

Lowest , Binary Left to Right

For example, in

a == b + c * d

c * d is evaluated first because * has a higher precedence than + and ==. The
result is then added to b because + has a higher precedence than ==, and then ==
is evaluated. Precedence rules can be overridden using brackets. For example,
rewriting the above expression as

a == (b + c) * d

causes + to be evaluated before *.
Operators with the same precedence level are evaluated in the order specified

by the last column of Table 2.9. For example, in

a = b += c

the evaluation order is right to left, so first b += c is evaluated, followed by a =
b. ¨

28 C++ Essentials Copyright © 2005 PragSoft

Simple Type Conversion

A value in any of the built-in types we have see so far can be converted (type-cast)
to any of the other types. For example:

(int) 3.14 // converts 3.14 to an int to give 3
(long) 3.14 // converts 3.14 to a long to give 3L
(double) 2 // converts 2 to a double to give 2.0
(char) 122 // converts 122 to a char whose code is 122
(unsigned short) 3.14 // gives 3 as an unsigned short

As shown by these examples, the built-in type identifiers can be used as type
operators . Type operators are unary (i.e., take one operand) and appear inside
brackets to the left of their operand. This is called explicit type conversion.
When the type name is just one word, an alternate notation may be used in which
the brackets appear around the operand:

int(3.14) // same as: (int) 3.14

In some cases, C++ also performs implicit type conversion. This happens
when values of different types are mixed in an expression. For example:

double d = 1; // d receives 1.0
int i = 10.5; // i receives 10
i = i + d; // means: i = int(double(i) + d)

In the last example, i + d involves mismatching types, so i is first converted to
double (promoted) and then added to d. The result is a double which does not
match the type of i on the left side of the assignment, so it is converted to int
(demoted) before being assigned to i.

The above rules represent some simple but common cases for type
conversion. More complex cases will be examined later in the book after we have
discussed other data types and classes.

¨

www.pragsoft.com Chapter 2: Expressions 29

Exercises

2.5 Write expressions for the following:

• To test if a number n is even.

• To test if a character c is a digit.

• To test if a character c is a letter.

• To do the test: n is odd and positive or n is even and negative.

• To set the n-th bit of a long integer f to 1.

• To reset the n-th bit of a long integer f to 0.

• To give the absolute value of a number n.

• To give the number of characters in a null-terminated string literal s.

2.6 Add extra brackets to the following expressions to explicitly show the order in
which the operators are evaluated:

(n <= p + q && n >= p - q || n == 0)
(++n * q-- / ++p - q)
(n | p & q ^ p << 2 + q)
(p < q ? n < p ? q * n - 2 : q / n + 1 : q - n)

2.7 What will be the value of each of the following variables after its initialization:

double d = 2 * int(3.14);
long k = 3.14 - 3;
char c = 'a' + 2;
char c = 'p' + 'A' - 'a';

2.8 Write a program which inputs a positive integer n and outputs 2 raised to the
power of n.

2.9 Write a program which inputs three numbers and outputs the message Sorted if
the numbers are in ascending order, and outputs Not sorted otherwise.

¨

30 C++ Essentials Copyright © 2005 PragSoft

3. Statements

This chapter introduces the various forms of C++ statements for composing
programs. Statements represent the lowest-level building blocks of a program.
Roughly speaking, each statement represents a computational step which has a
certain side-effect. (A side-effect can be thought of as a change in the program
state, such as the value of a variable changing because of an assignment.)
Statements are useful because of the side-effects they cause, the combination of
which enables the program to serve a specific purpose (e.g., sort a list of names).

A running program spends all of its time executing statements. The order in
which statements are executed is called flow control (or control flow). This term
reflect the fact that the currently executing statement has the control of the CPU,
which when completed will be handed over (flow) to another statement. Flow
control in a program is typically sequential, from one statement to the next, but may
be diverted to other paths by branch statements. Flow control is an important
consideration because it determines what is executed during a run and what is not,
therefore affecting the overall outcome of the program.

Like many other procedural languages, C++ provides different forms of
statements for different purposes. Declaration statements are used for defining
variables. Assignment-like statements are used for simple, algebraic computations.
Branching statements are used for specifying alternate paths of execution,
depending on the outcome of a logical condition. Loop statements are used for
specifying computations which need to be repeated until a certain logical condition
is satisfied. Flow control statements are used to divert the execution path to another
part of the program. We will discuss these in turn.

www.pragsoft.com Chapter 3: Statements 31

Simple and Compound Statements

A simple statement is a computation terminated by a semicolon. Variable
definitions and semicolon-terminated expressions are examples:

int i; // declaration statement
++i; // this has a side-effect
double d = 10.5; // declaration statement
d + 5; // useless statement!

The last example represents a useless statement, because it has no side-effect (d is
added to 5 and the result is just discarded).

The simplest statement is the null statement which consists of just a semicolon:

; // null statement

Although the null statement has no side-effect, as we will see later in the chapter, it
has some genuine uses.

Multiple statements can be combined into a compound statement by enclosing
them within braces. For example:

{ int min, i = 10, j = 20;
 min = (i < j ? i : j);
 cout << min << '\n';
}

Compound statements are useful in two ways: (i) they allow us to put multiple
statements in places where otherwise only single statements are allowed, and (ii)
they allow us to introduce a new scope in the program. A scope is a part of the
program text within which a variable remains defined. For example, the scope of
min, i, and j in the above example is from where they are defined till the closing
brace of the compound statement. Outside the compound statement, these
variables are not defined.

Because a compound statement may contain variable definitions and defines a
scope for them, it is also called a block. The scope of a C++ variable is limited to
the block immediately enclosing it. Blocks and scope rules will be described in
more detail when we discuss functions in the next chapter.

¨

32 C++ Essentials Copyright © 2005 PragSoft

The if Statement

It is sometimes desirable to make the execution of a statement dependent upon a
condition being satisfied. The if statement provides a way of expressing this, the
general form of which is:

if (expression)
statement;

First expression is evaluated. If the outcome is nonzero then statement is
executed. Otherwise, nothing happens.

For example, when dividing two values, we may want to check that the
denominator is nonzero:

if (count != 0)
average = sum / count;

To make multiple statements dependent on the same condition, we can use a
compound statement:

if (balance > 0) {
interest = balance * creditRate;
balance += interest;

}

A variant form of the if statement allows us to specify two alternative
statements: one which is executed if a condition is satisfied and one which is
executed if the condition is not satisfied. This is called the if-else statement and has
the general form:

if (expression)
statement1;

else
statement2;

First expression is evaluated. If the outcome is nonzero then statement1 is
executed. Otherwise, statement2 is executed.

For example:

if (balance > 0) {
interest = balance * creditRate;
balance += interest;

} else {
interest = balance * debitRate;
balance += interest;

}

www.pragsoft.com Chapter 3: Statements 33

Given the similarity between the two alternative parts, the whole statement can be
simplified to:

if (balance > 0)
interest = balance * creditRate;

else
interest = balance * debitRate;

balance += interest;

Or simplified even further using a conditional expression:

interest = balance * (balance > 0 ? creditRate : debitRate);
balance += interest;

Or just:

balance += balance * (balance > 0 ? creditRate : debitRate);

If statements may be nested by having an if statement appear inside another if
statement. For example:

if (callHour > 6) {
if (callDuration <= 5)

charge = callDuration * tarrif1;
else

charge = 5 * tarrif1 + (callDuration - 5) * tarrif2;
} else

charge = flatFee;

A frequently-used form of nested if statements involves the else part consisting
of another if-else statement. For example:

if (ch >= '0' && ch <= '9')
kind = digit;

else {
if (ch >= 'A' && ch <= 'Z')

kind = upperLetter;
else {

if (ch >= 'a' && ch <= 'z')
kind = lowerLetter;

else
kind = special;

}
}

For improved readability, it is conventional to format such cases as follows:

if (ch >= '0' && ch <= '9')
kind = digit;

else if (cha >= 'A' && ch <= 'Z')
kind = capitalLetter;

else if (ch >= 'a' && ch <= 'z')
kind = smallLetter;

34 C++ Essentials Copyright © 2005 PragSoft

else
kind = special;

¨

www.pragsoft.com Chapter 3: Statements 35

The switch Statement

The switch statement provides a way of choosing between a set of alternatives,
based on the value of an expression. The general form of the switch statement is:

switch (expression) {
case constant1:

statements;
...
case constantn:

statements;
default:

statements;
}

First expression (called the switch tag) is evaluated, and the outcome is compared
to each of the numeric constants (called case labels), in the order they appear,
until a match is found. The statements following the matching case are then
executed. Note the plural: each case may be followed by zero or more statements
(not just one statement). Execution continues until either a break statement is
encountered or all intervening statements until the end of the switch statement are
executed. The final default case is optional and is exercised if none of the earlier
cases provide a match.

For example, suppose we have parsed a binary arithmetic operation into its
three components and stored these in variables operator, operand1, and
operand2. The following switch statement performs the operation and stored the
result in result.

switch (operator) {
case '+': result = operand1 + operand2;

break;
case '-': result = operand1 - operand2;

break;
case '*': result = operand1 * operand2;

break;
case '/': result = operand1 / operand2;

break;
default: cout << "unknown operator: " << ch << '\n';

break;
}

As illustrated by this example, it is usually necessary to include a break
statement at the end of each case. The break terminates the switch statement by
jumping to the very end of it. There are, however, situations in which it makes
sense to have a case without a break. For example, if we extend the above
statement to also allow x to be used as a multiplication operator, we will have:

36 C++ Essentials Copyright © 2005 PragSoft

switch (operator) {
case '+': result = operand1 + operand2;

break;
case '-': result = operand1 - operand2;

break;
case 'x':
case '*': result = operand1 * operand2;

break;
case '/': result = operand1 / operand2;

break;
default: cout << "unknown operator: " << ch << '\n';

break;
}

Because case 'x' has no break statement (in fact no statement at all!), when this
case is satisfied, execution proceeds to the statements of the next case and the
multiplication is performed.

It should be obvious that any switch statement can also be written as multiple
if-else statements. The above statement, for example, may be written as:

if (operator == '+')
result = operand1 + operand2;

else if (operator == '-')
result = operand1 - operand2;

else if (operator == 'x' || operator == '*')
result = operand1 * operand2;

else if (operator == '/')
result = operand1 / operand2;

else
cout << "unknown operator: " << ch << '\n';

However, the switch version is arguably neater in this case. In general, preference
should be given to the switch version when possible. The if-else approach should
be reserved for situation where a switch cannot do the job (e.g., when the
conditions involved are not simple equality expressions, or when the case labels are
not numeric constants).

¨

www.pragsoft.com Chapter 3: Statements 37

The while Statement

The while statement (also called while loop) provides a way of repeating an
statement while a condition holds. It is one of the three flavors of iteration in C++.
The general form of the while statement is:

while (expression)
statement;

First expression (called the loop condition) is evaluated. If the outcome is nonzero
then statement (called the loop body) is executed and the whole process is
repeated. Otherwise, the loop is terminated.

For example, suppose we wish to calculate the sum of all numbers from 1 to
some integer denoted by n. This can be expressed as:

i = 1;
sum = 0;
while (i <= n)

sum += i++;

For n set to 5, Table 3.10 provides a trace of the loop by listing the values of
the variables involved and the loop condition.

Table 3.10 While loop trace.
Iteration i n i <= n sum += i++

First 1 5 1 1
Second 2 5 1 3

Third 3 5 1 6
Fourth 4 5 1 10
Fifth 5 5 1 15
Sixth 6 5 0

It is not unusual for a while loop to have an empty body (i.e., a null statement).
The following loop, for example, sets n to its greatest odd factor.

while (n % 2 == 0 && n /= 2)
;

Here the loop condition provides all the necessary computation, so there is no real
need for a body. The loop condition not only tests that n is even, it also divides n
by two and ensures that the loop will terminate should n be zero.

¨

38 C++ Essentials Copyright © 2005 PragSoft

The do Statement

The do statement (also called do loop) is similar to the while statement, except
that its body is executed first and then the loop condition is examined. The general
form of the do statement is:

do
statement;

while (expression);

First statement is executed and then expression is evaluated. If the outcome of the
latter is nonzero then the whole process is repeated. Otherwise, the loop is
terminated.

The do loop is less frequently used than the while loop. It is useful for
situations where we need the loop body to be executed at least once, regardless of
the loop condition. For example, suppose we wish to repeatedly read a value and
print its square, and stop when the value is zero. This can be expressed as the
following loop:

do {
cin >> n;
cout << n * n << '\n';

} while (n != 0);

Unlike the while loop, the do loop is never used in situations where it would
have a null body. Although a do loop with a null body would be equivalent to a
similar while loop, the latter is always preferred for its superior readability.

¨

www.pragsoft.com Chapter 3: Statements 39

The for Statement

The for statement (also called for loop) is similar to the while statement, but has
two additional components: an expression which is evaluated only once before
everything else, and an expression which is evaluated once at the end of each
iteration. The general form of the for statement is:

for (expression1; expression2; expression3)
statement;

First expression1 is evaluated. Each time round the loop, expression2 is
evaluated. If the outcome is nonzero then statement is executed and expression3 is
evaluated. Otherwise, the loop is terminated. The general for loop is equivalent to
the following while loop:

expression1;

while (expression2) {
statement;
expression3;

}

The most common use of for loops is for situations where a variable is
incremented or decremented with every iteration of the loop. The following for
loop, for example, calculates the sum of all integers from 1 to n.

sum = 0;
for (i = 1; i <= n; ++i)

sum += i;

This is preferred to the while-loop version we saw earlier. In this example, i is
usually called the loop variable.

C++ allows the first expression in a for loop to be a variable definition. In the
above loop, for example, i can be defined inside the loop itself:

for (int i = 1; i <= n; ++i)
sum += i;

Contrary to what may appear, the scope for i is not the body of the loop, but the
loop itself. Scope-wise, the above is equivalent to:

int i;
for (i = 1; i <= n; ++i)

sum += i;

40 C++ Essentials Copyright © 2005 PragSoft

Any of the three expressions in a for loop may be empty. For example,
removing the first and the third expression gives us something identical to a while
loop:

for (; i != 0;) // is equivalent to: while (i != 0)
something; // something;

Removing all the expressions gives us an infinite loop. This loop's condition is
assumed to be always true:

for (;;) // infinite loop
something;

For loops with multiple loop variables are not unusual. In such cases, the
comma operator is used to separate their expressions:

for (i = 0, j = 0; i + j < n; ++i, ++j)
something;

Because loops are statements, they can appear inside other loops. In other
words, loops can be nested. For example,

for (int i = 1; i <= 3; ++i)
for (int j = 1; j <= 3; ++j)

cout << '(' << i << ',' << j << ")\n";

produces the product of the set {1,2,3} with itself, giving the output:

(1,1)
(1,2)
(1,3)
(2,1)
(2,2)
(2,3)
(3,1)
(3,2)
(3,3)

 ¨

www.pragsoft.com Chapter 3: Statements 41

The continue Statement

The continue statement terminates the current iteration of a loop and instead
jumps to the next iteration. It applies to the loop immediately enclosing the continue
statement. It is an error to use the continue statement outside a loop.

In while and do loops, the next iteration commences from the loop condition.
In a for loop, the next iteration commences from the loop’s third expression. For
example, a loop which repeatedly reads in a number, processes it but ignores
negative numbers, and terminates when the number is zero, may be expressed as:

do {
cin >> num;
if (num < 0) continue;
// process num here...

} while (num != 0);

This is equivalent to:

do {
cin >> num;
if (num >= 0) {

// process num here...
}

} while (num != 0);

A variant of this loop which reads in a number exactly n times (rather than until
the number is zero) may be expressed as:

for (i = 0; i < n; ++i) {
cin >> num;
if (num < 0) continue; // causes a jump to: ++i
// process num here...

}

When the continue statement appears inside nested loops, it applies to the
loop immediately enclosing it, and not to the outer loops. For example, in the
following set of nested loops, the continue applies to the for loop, and not the while
loop:

while (more) {
for (i = 0; i < n; ++i) {

cin >> num;
if (num < 0) continue; // causes a jump to: ++i
// process num here...

}
//etc...

}
¨

42 C++ Essentials Copyright © 2005 PragSoft

The break Statement

A break statement may appear inside a loop (while, do, or for) or a switch
statement. It causes a jump out of these constructs, and hence terminates them.
Like the continue statement, a break statement only applies to the loop or switch
immediately enclosing it. It is an error to use the break statement outside a loop or
a switch.

For example, suppose we wish to read in a user password, but would like to
allow the user a limited number of attempts:

for (i = 0; i < attempts; ++i) {
cout << "Please enter your password: ";
cin >> password;
if (Verify(password)) // check password for correctness

break; // drop out of the loop
cout << "Incorrect!\n";

}

Here we have assumed that there is a function called Verify which checks a
password and returns true if it is correct, and false otherwise.

Rewriting the loop without a break statement is always possible by using an
additional logical variable (verified) and adding it to the loop condition:

verified = 0;
for (i = 0; i < attempts && !verified; ++i) {

cout << "Please enter your password: ";
cin >> password;
verified = Verify(password));
if (!verified)

cout << "Incorrect!\n";
}

The break version is arguably simpler and therefore preferred.
¨

www.pragsoft.com Chapter 3: Statements 43

The goto Statement

The goto statement provides the lowest-level of jumping. It has the general form:

goto label;

where label is an identifier which marks the jump destination of goto. The label
should be followed by a colon and appear before a statement within the same
function as the goto statement itself.

For example, the role of the break statement in the for loop in the previous
section can be emulated by a goto:

for (i = 0; i < attempts; ++i) {
cout << "Please enter your password: ";
cin >> password;
if (Verify(password)) // check password for correctness

goto out; // drop out of the loop
cout << "Incorrect!\n";

}
out:

//etc...

Because goto provides a free and unstructured form of jumping (unlike break
and continue), it can be easily misused. Most programmers these days avoid using
it altogether in favor of clear programming. Nevertheless, goto does have some
legitimate (though rare) uses. Because of the potential complexity of such cases,
furnishing of examples is postponed to the later parts of the book.

¨

44 C++ Essentials Copyright © 2005 PragSoft

The return Statement

The return statement enables a function to return a value to its caller. It has the
general form:

return expression;

where expression denotes the value returned by the function. The type of this value
should match the return type of the function. For a function whose return type is
void, expression should be empty:

return;

The only function we have discussed so far is main, whose return type is
always int. The return value of main is what the program returns to the operating
system when it completes its execution. Under UNIX, for example, it its
conventional to return 0 from main when the program executes without errors.
Otherwise, a non-zero error code is returned. For example:

int main (void)
{

cout << "Hello World\n";
return 0;

}

When a function has a non-void return value (as in the above example), failing
to return a value will result in a compiler warning. The actual return value will be
undefined in this case (i.e., it will be whatever value which happens to be in its
corresponding memory location at the time).

¨

www.pragsoft.com Chapter 3: Statements 45

Exercises

3.10 Write a program which inputs a person’s height (in centimeters) and weight (in
kilograms) and outputs one of the messages: underweight, normal, or
overweight, using the criteria:

Underweight: weight < height/2.5
Normal: height/2.5 <= weight <= height/2.3
Overweight: height/2.3 < weight

3.11 Assuming that n is 20, what will the following code fragment output when
executed?

if (n >= 0)
if (n < 10)

cout << "n is small\n";
else

cout << "n is negative\n";

3.12 Write a program which inputs a date in the format dd/mm/yy and outputs it in the
format month dd, year. For example, 25/12/61 becomes:

December 25, 1961

3.13 Write a program which inputs an integer value, checks that it is positive, and
outputs its factorial, using the formulas:

factorial(0) = 1
factorial(n) = n × factorial(n-1)

3.14 Write a program which inputs an octal number and outputs its decimal equivalent.
The following example illustrates the expected behavior of the program:

Input an octal number: 214
Octal(214) = Decimal(532)

3.15 Write a program which produces a simple multiplication table of the following
format for integers in the range 1 to 9:

1 x 1 = 1
1 x 2 = 2
...
9 x 9 = 81

¨

www.pragsoft.com Chapter 4: Functions 45

4. Functions

This chapter describes user-defined functions as one of the main building blocks of
C++ programs. The other main building block — user-defined classes — will be
discussed in Chapter 6.

A function provides a convenient way of packaging a computational recipe, so
that it can be used as often as required. A function definition consists of two
parts: interface and body. The interface of a function (also called its prototype)
specifies how it may be used. It consists of three entities:

• The function name. This is simply a unique identifier.

• The function parameters (also called its signature). This is a set of zero or
more typed identifiers used for passing values to and from the function.

• The function return type . This specifies the type of value the function returns.
A function which returns nothing should have the return type void.

The body of a function contains the computational steps (statements) that
comprise the function.

Using a function involves ‘calling’ it. A function call consists of the function
name followed by the call operator brackets ‘()’, inside which zero or more
comma-separated arguments appear. The number of arguments should match the
number of function parameters. Each argument is an expression whose type should
match the type of the corresponding parameter in the function interface.

When a function call is executed, the arguments are first evaluated and their
resulting values are assigned to the corresponding parameters. The function body is
then executed. Finally, the function return value (if any) is passed to the caller.

Since a call to a function whose return type is non-void yields a return value,
the call is an expression and may be used in other expressions. By contrast, a call
to a function whose return type is void is a statement.

46 C++ Essentials Copyright © 2005 PragSoft

A Simple Function

Listing 4.8 shows the definition of a simple function which raises an integer to the
power of another, positive integer.

Listing 4.8
1

 2
3

4
5
6
7

int Power (int base, unsigned int exponent)
{

int result = 1;

for (int i = 0; i < exponent; ++i)
result *= base;

return result;
}

Annotation

1 This line defines the function interface. It starts with the return type of the
function (int in this case). The function name appears next followed by its
parameter list. Power has two parameters (base and exponent) which are of
types int and unsigned int, respectively Note that the syntax for
parameters is similar to the syntax for defining variables: type identifier
followed by the parameter name. However, it is not possible to follow a type
identifier with multiple comma-separated parameters:

int Power (int base, exponent) // Wrong!

2 This brace marks the beginning of the function body.

3 This line is a local variable definition.

4-5 This for-loop raises base to the power of exponent and stores the outcome
in result.

6 This line returns result as the return value of the function.

7 This brace marks the end of the function body.

Listing 4.9 illustrates how this function is called. The effect of this call is that
first the argument values 2 and 8 are, respectively, assigned to the parameters base
and exponent, and then the function body is evaluated.

Listing 4.9
1

2
3
4
5

#include <iostream.h>

main (void)
{

cout << "2 ^ 8 = " << Power(2,8) << '\n';
}

When run, this program will produce the following output:

2 ^ 8 = 256

www.pragsoft.com Chapter 4: Functions 47

In general, a function should be declared before its is used. A function
declaration simply consists of the function prototype, which specifies the function
name, parameter types, and return type. Line 2 in Listing 4.10 shows how Power
may be declared for the above program. Although a function may be declared
without its parameter names,

int Power (int, unsigned int);

this is not recommended unless the role of the parameters is obvious..

Listing 4.10
1

2

3
4
5
6

7
8
9

10
11
12
13

#include <iostream.h>

int Power (int base, unsigned int exponent); // function declaration

main (void)
{

cout << "2 ^ 8 = " << Power(2,8) << '\n';
}

int Power (int base, unsigned int exponent)
{

int result = 1;

for (int i = 0; i < exponent; ++i)
result *= base;

return result;
}

Because a function definition contains a prototype, it also serves as a
declaration. Therefore if the definition of a function appears before its use, no
additional declaration is needed. Use of function prototypes is nevertheless
encouraged for all circumstances. Collecting these in a separate header file enables
other programmers to quickly access the functions without having to read their
entire definitions.

¨

48 C++ Essentials Copyright © 2005 PragSoft

Parameters and Arguments

C++ supports two styles of parameters: value and reference. A value parameter
receives a copy of the value of the argument passed to it. As a result, if the function
makes any changes to the parameter, this will not affect the argument. For example,
in

#include <iostream.h>

void Foo (int num)
{

num = 0;
cout << "num = " << num << '\n';

}

int main (void)
{

int x = 10;

Foo(x);
cout << "x = " << x << '\n';
return 0;

}

the single parameter of Foo is a value parameter. As far as this function is
concerned, num behaves just like a local variable inside the function. When the
function is called and x passed to it, num receives a copy of the value of x. As a
result, although num is set to 0 by the function, this does not affect x. The program
produces the following output:

num = 0;
x = 10;

A reference parameter, on the other hand, receives the argument passed to
it and works on it directly. Any changes made by the function to a reference
parameter is in effect directly applied to the argument. Reference parameters will
be further discussed in Chapter 5.

Within the context of function calls, the two styles of passing arguments are,
respectively, called pass-by-value and pass-by-reference. It is perfectly valid for
a function to use pass-by-value for some of its parameters and pass-by-reference
for others. The former is used much more often in practice.

¨

www.pragsoft.com Chapter 4: Functions 49

Global and Local Scope

Everything defined at the program scope level (i.e., outside functions and classes) is
said to have a global scope . Thus the sample functions we have seen so far all
have a global scope. Variables may also be defined at the global scope:

int year = 1994; // global variable
int Max (int, int); // global function
int main (void) // global function
{

//...
}

Uninitialized global variables are automatically initialized to zero.
Since global entities are visible at the program level, they must also be unique

at the program level. This means that the same global variable or function may not
be defined more than once at the global level. (However, as we will see later, a
function name may be reused so long as its signature remains unique.) Global
entities are generally accessible everywhere in the program.

Each block in a program defines a local scope . Thus the body of a function
represents a local scope. The parameters of a function have the same scope as the
function body. Variables defined within a local scope are visible to that scope only.
Hence, a variable need only be unique within its own scope. Local scopes may be
nested, in which case the inner scopes override the outer scopes. For example, in

int xyz; // xyz is global
void Foo (int xyz) // xyz is local to the body of Foo
{

if (xyz > 0) {
double xyz; // xyz is local to this block
//...

}
}

there are three distinct scopes, each containing a distinct xyz.
Generally, the lifetime of a variable is limited to its scope. So, for example,

global variables last for the duration of program execution, while local variables are
created when their scope is entered and destroyed when their scope is exited. The
memory space for global variables is reserved prior to program execution
commencing, whereas the memory space for local variables is allocated on the fly
during program execution.

¨

50 C++ Essentials Copyright © 2005 PragSoft

Scope Operator

Because a local scope overrides the global scope, having a local variable with the
same name as a global variable makes the latter inaccessible to the local scope. For
example, in

int error;

void Error (int error)
{

//...
}

the global error is inaccessible inside Error, because it is overridden by the local
error parameter.

This problem is overcome using the unary scope operator :: which takes a
global entity as argument:

int error;

void Error (int error)
{

//...
if (::error != 0) // refers to global error

//...
}

¨

www.pragsoft.com Chapter 4: Functions 51

Auto Variables

Because the lifetime of a local variable is limited and is determined automatically,
these variables are also called automatic. The storage class specifier auto may be
used to explicitly specify a local variable to be automatic. For example:

void Foo (void)
{

auto int xyz; // same as: int xyz;
//...

}

This is rarely used because all local variables are by default automatic.
¨

52 C++ Essentials Copyright © 2005 PragSoft

Register Variables

As mentioned earlier, variables generally denote memory locations where variable
values are stored. When the program code refers to a variable (e.g., in an
expression), the compiler generates machine code which accesses the memory
location denoted by the variable. For frequently-used variables (e.g., loop
variables), efficiency gains can be obtained by keeping the variable in a register
instead thereby avoiding memory access for that variable.

The storage class specifier register may be used to indicate to the compiler
that the variable should be stored in a register if possible. For example:

for (register int i = 0; i < n; ++i)
sum += i;

Here, each time round the loop, i is used three times: once when it is compared to
n, once when it is added to sum, and once when it is incremented. Therefore it
makes sense to keep i in a register for the duration of the loop.

Note that register is only a hint to the compiler, and in some cases the
compiler may choose not to use a register when it is asked to do so. One reason
for this is that any machine has a limited number of registers and it may be the case
that they are all in use.

Even when the programmer does not use register declarations, many
optimizing compilers try to make an intelligent guess and use registers where they
are likely to improve the performance of the program.

Use of register declarations can be left as an after thought; they can always be
added later by reviewing the code and inserting it in appropriate places.

¨

www.pragsoft.com Chapter 4: Functions 53

Static Variables and Functions

It is often useful to confine the accessibility of a global variable or function to a
single file. This is facilitated by the storage class specifier static. For example,
consider a puzzle game program which consists of three files for game generation,
game solution, and user interface. The game solution file would contain a Solve
function and a number of other functions ancillary to Solve. Because the latter are
only for the private use of Solve, it is best not to make them accessible outside the
file:

static int FindNextRoute (void) // only accessible in this file
{

//...
}
//...

int Solve (void) // accessible outside this file
{

//...
}

The same argument may be applied to the global variables in this file that are
for the private use of the functions in the file. For example, a global variable which
records the length of the shortest route so far is best defined as static:

static int shortestRoute; // static global variable

A local variable in a function may also be defined as static. The variable will
remain only accessible within its local scope; however, its lifetime will no longer be
confined to this scope, but will instead be global. In other words, a static local
variable is a global variable which is only accessible within its local scope.

Static local variables are useful when we want the value of a local variable to
persist across the calls to the function in which it appears. For example, consider an
Error function which keeps a count of the errors and aborts the program when the
count exceeds a preset limit:

void Error (char *message)
{

static int count = 0; // static local variable

if (++count > limit)
Abort();

//...
}

Like global variables, static local variables are automatically initialized to 0.
¨

54 C++ Essentials Copyright © 2005 PragSoft

Extern Variables and Functions

Because a global variable may be defined in one file and referred to in other files,
some means of telling the compiler that the variable is defined elsewhere may be
needed. Otherwise, the compiler may object to the variable as undefined. This is
facilitated by an extern declaration. For example, the declaration

extern int size; // variable declaration

informs the compiler that size is actually defined somewhere (may be later in this
file or in another file). This is called a variable declaration (not definition) because
it does not lead to any storage being allocated for size.

It is a poor programming practice to include an initializer for an extern
variable, since this causes it to become a variable definition and have storage
allocated for it:

extern int size = 10; // no longer a declaration!

If there is another definition for size elsewhere in the program, it will eventually
clash with this one.

Function prototypes may also be declared as extern, but this has no effect
when a prototype appears at the global scope. It is more useful for declaring
function prototypes inside a function. For example:

double Tangent (double angle)
{

extern double sin(double); // defined elsewhere
extern double cos(double); // defined elsewhere

return sin(angle) / cos(angle);
}

The best place for extern declarations is usually in header files so that they
can be easily included and shared by source files.

¨

www.pragsoft.com Chapter 4: Functions 55

Symbolic Constants

Preceding a variable definition by the keyword const makes that variable read-
only (i.e., a symbolic constant). A constant must be initialized to some value when it
is defined. For example:

const int maxSize = 128;
const double pi = 3.141592654;

Once defined, the value of a constant cannot be changed:

maxSize = 256; // illegal!

A constant with no type specifier is assumed to be of type int:

const maxSize = 128; // maxSize is of type int

With pointers, two aspects need to be considered: the pointer itself, and the
object pointed to, either of which or both can be constant:

const char *str1 = "pointer to constant";
char *const str2 = "constant pointer";
const char *const str3 = "constant pointer to constant";
str1[0] = 'P'; // illegal!
str1 = "ptr to const"; // ok
str2 = "const ptr"; // illegal!
str2[0] = 'P'; // ok
str3 = "const to const ptr"; // illegal!
str3[0] = 'C'; // illegal!

A function parameter may also be declared to be constant. This may be used
to indicate that the function does not change the value of a parameter:

int Power (const int base, const unsigned int exponent)
{

//...
}

A function may also return a constant result:

const char* SystemVersion (void)
{

return "5.2.1";
}

The usual place for constant definition is within header files so that they can be
shared by source files.

¨

56 C++ Essentials Copyright © 2005 PragSoft

Enumerations

An enumeration of symbolic constants is introduced by an enum declaration. This is
useful for declaring a set of closely-related constants. For example,

enum {north, south, east, west};

introduces four enumerators which have integral values starting from 0 (i.e.,
north is 0, south is 1, etc.) Unlike symbolic constants, however, which are read-
only variables, enumerators have no allocated memory.

The default numbering of enumerators can be overruled by explicit initialization:

enum {north = 10, south, east = 0, west};

Here, south is 11 and west is 1.
An enumeration can also be named, where the name becomes a user-defined

type. This is useful for defining variables which can only be assigned a limited set of
values. For example, in

enum Direction {north, south, east, west};
Direction d;

d can only be assigned one of the enumerators for Direction.
Enumerations are particularly useful for naming the cases of a switch statement.

switch (d) {
case north: //...
case south: //...
case east: //...
case west: //...

}

We will extensively use the following enumeration for representing boolean
values in the programs in this book:

enum Bool {false, true};
¨

www.pragsoft.com Chapter 4: Functions 57

Runtime Stack

Like many other modern programming languages, C++ function call execution is
based on a runtime stack. When a function is called, memory space is allocated on
this stack for the function parameters, return value, and local variables, as well as a
local stack area for expression evaluation. The allocated space is called a stack
frame . When a function returns, the allocated stack frame is released so that it can
be reused.

For example, consider a situation where main calls a function called Solve
which in turn calls another function called Normalize:

int Normalize (void)
{

//...
}

int Solve (void)
{

//...
Normalize();
//...

}

int main (void)
{

//...
Solve();
//...

}

Figure 4.5 illustrates the stack frame when Normalize is being executed.

Figure 4.5 Function call stack frames.

main Solve Normalize

It is important to note that the calling of a function involves the overheads of
creating a stack frame for it and removing the stack frame when it returns. For most
functions, this overhead is negligible compared to the actual computation the
function performs.

¨

58 C++ Essentials Copyright © 2005 PragSoft

Inline Functions

Suppose that a program frequently requires to find the absolute value of an integer
quantity. For a value denoted by n, this may be expressed as:

(n > 0 ? n : -n)

However, instead of replicating this expression in many places in the program, it is
better to define it as a function:

int Abs (int n)
{

return n > 0 ? n : -n;
}

The function version has a number of advantages. First, it leads to a more
readable program. Second, it is reusable. And third, it avoid undesirable side-
effects when the argument is itself an expression with side-effects.

The disadvantage of the function version, however, is that its frequent use can
lead to a considerable performance penalty due to the overheads associated with
calling a function. For example, if Abs is used within a loop which is iterated
thousands of times, then it will have an impact on performance. The overhead can
be avoided by defining Abs as an inline function:

inline int Abs (int n)
{

return n > 0 ? n : -n;
}

The effect of this is that when Abs is called, the compiler, instead of generating
code to call Abs, expands and substitutes the body of Abs in place of the call.
While essentially the same computation is performed, no function call is involved
and hence no stack frame is allocated.

Because calls to an inline function are expanded, no trace of the function itself
will be left in the compiled code. Therefore, if a function is defined inline in one file,
it may not be available to other files. Consequently, inline functions are commonly
placed in header files so that they can be shared.

Like the register keyword, inline is a hint which the compiler is not
obliged to observe. Generally, the use of inline should be restricted to simple,
frequently used functions. A function which contains anything more than a couple of
statements is unlikely to be a good candidate. Use of inline for excessively long and
complex functions is almost certainly ignored by the compiler. ¨

www.pragsoft.com Chapter 4: Functions 59

Recursion

A function which calls itself is said to be recursive. Recursion is a general
programming technique applicable to problems which can be defined in terms of
themselves. Take the factorial problem, for instance, which is defined as:

• Factorial of 0 is 1.

• Factorial of a positive number n is n times the factorial of n-1.

The second line clearly indicates that factorial is defined in terms of itself and hence
can be expressed as a recursive function:

int Factorial (unsigned int n)
{

return n == 0 ? 1 : n * Factorial(n-1);
}

For n set to 3, Table 4.11 provides a trace of the calls to Factorial. The
stack frames for these calls appear sequentially on the runtime stack, one after the
other.

Table 4.11 Factorial(3) execution trace.
Call n n == 0 n * Factorial(n-1) Returns
First 3 0 3 * Factorial(2) 6

Second 2 0 2 * Factorial(1) 2
Third 1 0 1 * Factorial(0) 1

Fourth 0 1 1

A recursive function must have at least one termination condition which can
be satisfied. Otherwise, the function will call itself indefinitely until the runtime stack
overflows. The Factorial function, for example, has the termination condition n ==
0 which, when satisfied, causes the recursive calls to fold back. (Note that for a
negative n this condition will never be satisfied and Factorial will fail).

As a general rule, all recursive functions can be rewritten using iteration. In
situations where the number of stack frames involved may be quite large, the
iterative version is preferred. In other cases, the elegance and simplicity of the
recursive version may give it the edge.

For factorial, for example, a very large argument will lead to as many stack
frames. An iterative version is therefore preferred in this case:

int Factorial (unsigned int n)
{

int result = 1;
while (n > 0) result *= n--;
return result;

} ¨

60 C++ Essentials Copyright © 2005 PragSoft

Default Arguments

Default argument is a programming convenience which removes the burden of
having to specify argument values for all of a function’s parameters. For example,
consider a function for reporting errors:

void Error (char *message, int severity = 0);

Here, severity has a default argument of 0; both the following calls are therefore
valid:

Error("Division by zero", 3); // severity set to 3
Error("Round off error"); // severity set to 0

As the first call illustrates, a default argument may be overridden by explicitly
specifying an argument.

Default arguments are suitable for situations where certain (or all) function
parameters frequently take the same values. In Error, for example, severity 0
errors are more common than others and therefore a good candidate for default
argument. A less appropriate use of default arguments would be:

int Power (int base, unsigned int exponent = 1);

Because 1 (or any other value) is unlikely to be a frequently-used one in this
situation.

To avoid ambiguity, all default arguments must be trailing arguments. The
following declaration is therefore illegal:

void Error (char *message = "Bomb", int severity); // Illegal!

A default argument need not necessarily be a constant. Arbitrary expressions
can be used, so long as the variables used in the expression are available to the
scope of the function definition (e.g., global variables).

The accepted convention for default arguments is to specify them in function
declarations, not function definitions. Because function declarations appear in
header files, this enables the user of a function to have control over the default
arguments. Thus different default arguments can be specified for different situations.
It is, however, illegal to specify two different default arguments for the same
function in a file.

¨

www.pragsoft.com Chapter 4: Functions 61

Variable Number of Arguments

It is sometimes desirable, if not necessary, to have functions which take a variable
number of arguments. A simple example is a function which takes a set of menu
options as arguments, displays the menu, and allows the user to choose one of the
options. To be general, the function should be able to accept any number of
options as arguments. This may be expressed as

int Menu (char *option1 ...);

which states that Menu should be given one argument or more.
Menu can access its arguments using a set of macro definitions in the header

file stdarg.h, as illustrated by Listing 4.11. The relevant macros are highlighted in
bold.

Listing 4.11
1

 2

3
4
5
6
7

8

9
10
11

12
13
14
15
16

#include <iostream.h>
#include <stdarg.h>

int Menu (char *option1 ...)
{

va_list args; // argument list
char* option = option1;
int count = 0, choice = 0;

va_start(args, option1); // initialize args

do {
cout << ++count << ". " << option << '\n';

} while ((option = va_arg(args, char*)) != 0);

va_end(args); // clean up args
cout << "option? ";
cin >> choice;
return (choice > 0 && choice <= count) ? choice : 0;

}

Annotation

5 To access the arguments, args is declared to be of type va_list.

8 Args is initialized by calling va_start. The second argument to va_start
must be the last function parameter explicitly declared in the function header
(i.e., option1 here).

11 Subsequent arguments are retrieved by calling va_arg. The second argument
to va_arg must be the expected type of that argument (i.e., char* here). For
this technique to work, the last argument must be a 0, marking the end of the
argument list. Va_arg is called repeatedly until this 0 is reached.

62 C++ Essentials Copyright © 2005 PragSoft

12 Finally, va_end is called to restore the runtime stack (which may have been
modified by the earlier calls).

The sample call

int n = Menu(
"Open file",
"Close file",
"Revert to saved file",
"Delete file",
"Quit application",
0);

will produce the following output:

1. Open file
2. Close file
3. Revert to saved file
4. Delete file
5. Quit application
option?

¨

www.pragsoft.com Chapter 4: Functions 63

Command Line Arguments

When a program is executed under an operating system (such as DOS or UNIX),
it can be passed zero or more arguments. These arguments appear after the
program executable name and are separated by blanks. Because they appear on
the same line as where operating system commands are issued, they are called
command line arguments.

As an example, consider a program named sum which prints out the sum of a
set of numbers provided to it as command line arguments. Dialog 4.3 illustrates
how two numbers are passed as arguments to sum ($ is the UNIX prompt).

Dialog 4.3
1

 2
3

$ sum 10.4 12.5
22.9
$

Command line arguments are made available to a C++ program via the main
function. There are two ways in which main can be defined:

int main (void);
int main (int argc, const char* argv[]);

The latter is used when the program is intended to accept command line arguments.
The first parameter, argc, denotes the number of arguments passed to the program
(including the name of the program itself). The second parameter, argv, is an array
of the string constants which represent the arguments. For example, given the
command line in Dialog 4.3, we have:

argc is 3
argv[0] is "sum"
argv[1] is "10.4"
argv[2] is "12.5"

Listing 4.12 illustrates a simple implementation for sum. Strings are converted to
real numbers using atof, which is defined in stdlib.h.

Listing 4.12
1

 2

3
4
5
6
7
8
9

10

#include <iostream.h>
#include <stdlib.h>

int main (int argc, const char *argv[])
{

double sum = 0;
for (int i = 1; i < argc; ++i)

 sum += atof(argv[i]);
cout << sum << '\n';
return 0;

}
¨

64 C++ Essentials Copyright © 2005 PragSoft

Exercises

4.16 Write the programs in exercises 1.1 and 3.1 as functions.

4.17 Given the following definition of a Swap function

void Swap (int x, int y)
{

int temp = x;
x = y;
y = temp;

}

what will be the value of x and y after the following call:

x = 10;
y = 20;
Swap(x, y);

4.18 What will the following program output when executed?

#include <iostream.h>
char *str = "global";

void Print (char *str)
{

cout << str << '\n';
{

char *str = "local";
cout << str << '\n';
cout << ::str << '\n';

}
cout << str << '\n';

}

int main (void)
{

Print("Parameter");
return 0;

}

4.19 Write a function which outputs all the prime numbers between 2 and a given
positive integer n:

void Primes (unsigned int n);

A number is prime if it is only divisible by itself and 1.

4.20 Define an enumeration called Month for the months of the year and use it to define
a function which takes a month as argument and returns it as a constant string.

www.pragsoft.com Chapter 4: Functions 65

4.21 Define an inline function called IsAlpha which returns nonzero when its argument
is a letter, and zero otherwise.

4.22 Define a recursive version of the Power function described in this chapter.

4.23 Write a function which returns the sum of a list of real values

double Sum (int n, double val ...);

where n denotes the number of values in the list.

¨

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 65

5. Arrays, Pointers, and References

This chapter introduces the array, pointer, and reference data types and illustrates
their use for defining variables.

An array consists of a set of objects (called its elements), all of which are of
the same type and are arranged contiguously in memory. In general, only the array
itself has a symbolic name, not its elements. Each element is identified by an index
which denotes the position of the element in the array. The number of elements in
an array is called its dimension. The dimension of an array is fixed and
predetermined; it cannot be changed during program execution.

Arrays are suitable for representing composite data which consist of many
similar, individual items. Examples include: a list of names, a table of world cities
and their current temperatures, or the monthly transactions for a bank account.

A pointer is simply the address of an object in memory. Generally, objects
can be accessed in two ways: directly by their symbolic name, or indirectly through
a pointer. The act of getting to an object via a pointer to it, is called dereferencing
the pointer. Pointer variables are defined to point to objects of a specific type so
that when the pointer is dereferenced, a typed object is obtained.

Pointers are useful for creating dynamic objects during program execution.
Unlike normal (global and local) objects which are allocated storage on the runtime
stack, a dynamic object is allocated memory from a different storage area called
the heap. Dynamic objects do not obey the normal scope rules. Their scope is
explicitly controlled by the programmer.

A reference provides an alternative symbolic name (alias) for an object.
Accessing an object through a reference is exactly the same as accessing it through
its original name. References offer the power of pointers and the convenience of
direct access to objects. They are used to support the call-by-reference style of
function parameters, especially when large objects are being passed to functions.

66 C++ Essentials Copyright © 2005 PragSoft

Arrays

An array variable is defined by specifying its dimension and the type of its elements.
For example, an array representing 10 height measurements (each being an integer
quantity) may be defined as:

int heights[10];

The individual elements of the array are accessed by indexing the array. The first
array element always has the index 0. Therefore, heights[0] and heights[9]
denote, respectively, the first and last element of heights. Each of heights
elements can be treated as an integer variable. So, for example, to set the third
element to 177, we may write:

heights[2] = 177;

Attempting to access a nonexistent array element (e.g., heights[-1] or
heights[10]) leads to a serious runtime error (called ‘index out of bounds’
error).

Processing of an array usually involves a loop which goes through the array
element by element. Listing 5.13 illustrates this using a function which takes an
array of integers and returns the average of its elements.

Listing 5.13
1

2
3
4

5
6
7
8

const int size = 3;

double Average (int nums[size])
{

double average = 0;

for (register i = 0; i < size; ++i)
average += nums[i];

return average/size;
}

Like other variables, an array may have an initializer. Braces are used to
specify a list of comma-separated initial values for array elements. For example,

int nums[3] = {5, 10, 15};

initializes the three elements of nums to 5, 10, and 15, respectively. When the
number of values in the initializer is less than the number of elements, the remaining
elements are initialized to zero:

int nums[3] = {5, 10}; // nums[2] initializes to 0

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 67

When a complete initializer is used, the array dimension becomes redundant,
because the number of elements is implicit in the initializer. The first definition of
nums can therefore be equivalently written as:

int nums[] = {5, 10, 15}; // no dimension needed

Another situation in which the dimension can be omitted is for an array function
parameter. For example, the Average function above can be improved by
rewriting it so that the dimension of nums is not fixed to a constant, but specified by
an additional parameter. Listing 5.14 illustrates this.

Listing 5.14
1

 2
3

4
5
6
7

double Average (int nums[], int size)
{

double average = 0;

for (register i = 0; i < size; ++i)
average += nums[i];

return average/size;
}

A C++ string is simply an array of characters. For example,

char str[] = "HELLO";

defines str to be an array of six characters: five letters and a null character. The
terminating null character is inserted by the compiler. By contrast,

char str[] = {'H', 'E', 'L', 'L', 'O'};

defines str to be an array of five characters.
It is easy to calculate the dimension of an array using the sizeof operator. For

example, given an array ar whose element type is Type, the dimension of ar is:

sizeof(ar) / sizeof(Type)
¨

68 C++ Essentials Copyright © 2005 PragSoft

Multidimensional Arrays

An array may have more than one dimension (i.e., two, three, or higher). The
organization of the array in memory is still the same (a contiguous sequence of
elements), but the programmer’s perceived organization of the elements is different.
For example, suppose we wish to represent the average seasonal temperature for
three major Australian capital cities (see Table 5.12).

Table 5.12 Average seasonal temperature.
Spring Summer Autumn Winter

Sydney 26 34 22 17
Melbourne 24 32 19 13
Brisbane 28 38 25 20

This may be represented by a two-dimensional array of integers:

int seasonTemp[3][4];

The organization of this array in memory is as 12 consecutive integer elements. The
programmer, however, can imagine it as three rows of four integer entries each (see
Figure 5.6).

Figure 5.6 Organization of seasonTemp in memory.
... 32 19 13 28 38 25 ...26 34 22 17 24 20

First row Second row Third row

As before, elements are accessed by indexing the array. A separate index is
needed for each dimension. For example, Sydney’s average summer temperature
(first row, second column) is given by seasonTemp[0][1].

The array may be initialized using a nested initializer:

int seasonTemp[3][4] = {
{26, 34, 22, 17},
{24, 32, 19, 13},
{28, 38, 25, 20}

};

Because this is mapped to a one-dimensional array of 12 elements in memory, it is
equivalent to:

int seasonTemp[3][4] = {
26, 34, 22, 17, 24, 32, 19, 13, 28, 38, 25, 20

};

The nested initializer is preferred because as well as being more informative, it is
more versatile. For example, it makes it possible to initialize only the first element of
each row and have the rest default to zero:

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 69

int seasonTemp[3][4] = {{26}, {24}, {28}};

We can also omit the first dimension (but not subsequent dimensions) and let it be
derived from the initializer:

int seasonTemp[][4] = {
{26, 34, 22, 17},
{24, 32, 19, 13},
{28, 38, 25, 20}

};

Processing a multidimensional array is similar to a one-dimensional array, but
uses nested loops instead of a single loop. Listing 5.15 illustrates this by showing a
function for finding the highest temperature in seasonTemp.

Listing 5.15
1

 2

3
4
5
6
7

8
9

10

11
12
13
14
15
16

const int rows = 3;
const int columns = 4;

int seasonTemp[rows][columns] = {
{26, 34, 22, 17},
{24, 32, 19, 13},
{28, 38, 25, 20}

};

int HighestTemp (int temp[rows][columns])
{

int highest = 0;

for (register i = 0; i < rows; ++i)
 for (register j = 0; j < columns; ++j)

if (temp[i][j] > highest)
 highest = temp[i][j];

return highest;
}

¨

70 C++ Essentials Copyright © 2005 PragSoft

Pointers

A pointer is simply the address of a memory location and provides an indirect way
of accessing data in memory. A pointer variable is defined to ‘point to’ data of a
specific type. For example:

int *ptr1; // pointer to an int
char *ptr2; // pointer to a char

The value of a pointer variable is the address to which it points. For example,
given the definitions

int num;

we can write:

ptr1 = #

The symbol & is the address operator; it takes a variable as argument and returns
the memory address of that variable. The effect of the above assignment is that the
address of num is assigned to ptr1. Therefore, we say that ptr1 points to num.
Figure 5.7 illustrates this diagrammatically.

Figure 5.7 A simple integer pointer.

ptr1 num

Given that ptr1 points to num, the expression

*ptr1

dereferences ptr1 to get to what it points to, and is therefore equivalent to num.
The symbol * is the dereference operator; it takes a pointer as argument and
returns the contents of the location to which it points.

In general, the type of a pointer must match the type of the data it is set to
point to. A pointer of type void*, however, will match any type. This is useful for
defining pointers which may point to data of different types, or whose type is
originally unknown.

A pointer may be cast (type converted) to another type. For example,

ptr2 = (char*) ptr1;

converts ptr1 to char pointer before assigning it to ptr2.
Regardless of its type, a pointer may be assigned the value 0 (called the null

pointer). The null pointer is used for initializing pointers, and for marking the end of
pointer-based data structures (e.g., linked lists).

¨

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 71

Dynamic Memory

In addition to the program stack (which is used for storing global variables and
stack frames for function calls), another memory area, called the heap, is provided.
The heap is used for dynamically allocating memory blocks during program
execution. As a result, it is also called dynamic memory. Similarly, the program
stack is also called static memory.

Two operators are used for allocating and deallocating memory blocks on the
heap. The new operator takes a type as argument and allocated a memory block
for an object of that type. It returns a pointer to the allocated block. For example,

int *ptr = new int;
char *str = new char[10];

allocate, respectively, a block for storing a single integer and a block large enough
for storing an array of 10 characters.

Memory allocated from the heap does not obey the same scope rules as
normal variables. For example, in

void Foo (void)
{

char *str = new char[10];
//...

}

when Foo returns, the local variable str is destroyed, but the memory block
pointed to by str is not. The latter remains allocated until explicitly released by the
programmer.

The delete operator is used for releasing memory blocks allocated by new. It
takes a pointer as argument and releases the memory block to which it points. For
example:

delete ptr; // delete an object
delete [] str; // delete an array of objects

Note that when the block to be deleted is an array, an additional [] should be
included to indicate this. The significance of this will be explained later when we
discuss classes.

Should delete be applied to a pointer which points to anything but a
dynamically-allocated object (e.g., a variable on the stack), a serious runtime error
may occur. It is harmless to apply delete to the 0 pointer.

Dynamic objects are useful for creating data which last beyond the function
call which creates them. Listing 5.16 illustrates this using a function which takes a
string parameter and returns a copy of the string.

Listing 5.16

72 C++ Essentials Copyright © 2005 PragSoft

1

2
3
4

5
6
7

#include <string.h>

char* CopyOf (const char *str)
{

char *copy = new char[strlen(str) + 1];

strcpy(copy, str);
return copy;

}

Annotation

1 This is the standard string header file which declares a variety of functions for
manipulating strings.

4 The strlen function (declared in string.h) counts the characters in its string
argument up to (but excluding) the final null character. Because the null
character is not included in the count, we add 1 to the total and allocate an
array of characters of that size.

5 The strcpy function (declared in string.h) copies its second argument to
its first, character by character, including the final null character.

Because of the limited memory resources, there is always the possibility that
dynamic memory may be exhausted during program execution, especially when
many large blocks are allocated and none released. Should new be unable to
allocate a block of the requested size, it will return 0 instead. It is the responsibility
of the programmer to deal with such possibilities. The exception handling
mechanism of C++ (explained in Chapter 10) provides a practical method of
dealing with such problems.

¨

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 73

Pointer Arithmetic

In C++ one can add an integer quantity to or subtract an integer quantity from a
pointer. This is frequently used by programmers and is called pointer arithmetic.
Pointer arithmetic is not the same as integer arithmetic, because the outcome
depends on the size of the object pointed to. For example, suppose that an int is
represented by 4 bytes. Now, given

char *str = "HELLO";
int nums[] = {10, 20, 30, 40};
int *ptr = &nums[0]; // pointer to first element

str++ advances str by one char (i.e., one byte) so that it points to the second
character of "HELLO", whereas ptr++ advances ptr by one int (i.e., four bytes)
so that it points to the second element of nums. Figure 5.8 illustrates this
diagrammatically.

Figure 5.8 Pointer arithmetic.

H E L L O \0 10 20 30 40

str

str++

ptr

ptr++

It follows, therefore, that the elements of "HELLO" can be referred to as *str,
*(str + 1), *(str + 2), etc. Similarly, the elements of nums can be referred to
as *ptr, *(ptr + 1), *(ptr + 2), and *(ptr + 3).

Another form of pointer arithmetic allowed in C++ involves subtracting two
pointers of the same type. For example:

int *ptr1 = &nums[1];
int *ptr2 = &nums[3];
int n = ptr2 - ptr1; // n becomes 2

Pointer arithmetic is very handy when processing the elements of an array.
Listing 5.17 shows as an example a string copying function similar to strcpy.

Listing 5.17
1

 2
3

 4
5

void CopyString (char *dest, char *src)
{

while (*dest++ = *src++)
;

}

74 C++ Essentials Copyright © 2005 PragSoft

Annotation

3 The condition of this loop assigns the contents of src to the contents of dest
and then increments both pointers. This condition becomes 0 when the final
null character of src is copied to dest.

In turns out that an array variable (such as nums) is itself the address of the
first element of the array it represents. Hence the elements of nums can also be
referred to using pointer arithmetic on nums, that is, nums[i] is equivalent to
*(nums + i). The difference between nums and ptr is that nums is a constant,
so it cannot be made to point to anything else, whereas ptr is a variable and can
be made to point to any other integer.

Listing 5.18 shows how the HighestTemp function (shown earlier in Listing
5.15) can be improved using pointer arithmetic.

Listing 5.18
1

 2
3

4
5
6
7
8
9

int HighestTemp (const int *temp, const int rows, const int columns)
{

int highest = 0;

for (register i = 0; i < rows; ++i)
 for (register j = 0; j < columns; ++j)

if (*(temp + i * columns + j) > highest)
highest = *(temp + i * columns + j);

return highest;
}

Annotation

1 Instead of passing an array to the function, we pass an int pointer and two
additional parameters which specify the dimensions of the array. In this way,
the function is not restricted to a specific array size.

6 The expression *(temp + i * columns + j) is equivalent to temp[i][j]
in the previous version of this function.

HighestTemp can be simplified even further by treating temp as a one-
dimensional array of row * column integers. This is shown in Listing 5.19.

Listing 5.19
1

 2
3

4
5
6
7
8

int HighestTemp (const int *temp, const int rows, const int columns)
{

int highest = 0;

for (register i = 0; i < rows * columns; ++i)
if (*(temp + i) > highest)

highest = *(temp + i);
return highest;

}
¨

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 75

Function Pointers

It is possible to take the address of a function and store it in a function pointer. The
pointer can then be used to indirectly call the function. For example,

int (*Compare)(const char*, const char*);

defines a function pointer named Compare which can hold the address of any
function that takes two constant character pointers as arguments and returns an
integer. The string comparison library function strcmp, for example, is such.
Therefore:

Compare = &strcmp; // Compare points to strcmp function

The & operator is not necessary and can be omitted:

Compare = strcmp; // Compare points to strcmp function

Alternatively, the pointer can be defined and initialized at once:

int (*Compare)(const char*, const char*) = strcmp;

When a function address is assigned to a function pointer, the two types must
match. The above definition is valid because strcmp has a matching function
prototype:

int strcmp(const char*, const char*);

Given the above definition of Compare, strcmp can be either called directly,
or indirectly via Compare. The following three calls are equivalent:

strcmp("Tom", "Tim"); // direct call
(*Compare)("Tom", "Tim"); // indirect call
Compare("Tom", "Tim"); // indirect call (abbreviated)

A common use of a function pointer is to pass it as an argument to another
function; typically because the latter requires different versions of the former in
different circumstances. A good example is a binary search function for searching
through a sorted array of strings. This function may use a comparison function (such
as strcmp) for comparing the search string against the array strings. This might not
be appropriate for all cases. For example, strcmp is case-sensitive. If we wanted
to do the search in a non-case-sensitive manner then a different comparison
function would be needed.

As shown in Listing 5.20, by making the comparison function a parameter of
the search function, we can make the latter independent of the former.

Listing 5.20

76 C++ Essentials Copyright © 2005 PragSoft

1
 2
3

 4
5
6

7
8
9

10
11
12
13
14
15
16
17

int BinSearch (char *item, char *table[], int n,
 int (*Compare)(const char*, const char*))

{
int bot = 0;
int top = n - 1;
int mid, cmp;

while (bot <= top) {
mid = (bot + top) / 2;
if ((cmp = Compare(item,table[mid])) == 0)

return mid; // return item index
else if (cmp < 0)

top = mid - 1; // restrict search to lower half
else

bot = mid + 1; // restrict search to upper half
}
return -1; // not found

}

Annotation

1 Binary search is a well-known algorithm for searching through a sorted list of
items. The search list is denoted by table which is an array of strings of
dimension n. The search item is denoted by item.

2 Compare is the function pointer to be used for comparing item against the
array elements.

7 Each time round this loop, the search span is reduced by half. This is repeated
until the two ends of the search span (denoted by bot and top) collide, or
until a match is found.

9 The item is compared against the middle item of the array.

10 If item matches the middle item, the latter’s index is returned.

11 If item is less than the middle item, then the search is restricted to the lower
half of the array.

14 If item is greater than the middle item, then the search is restricted to the
upper half of the array.

16 Returns -1 to indicate that there was no matching item.

The following example shows how BinSearch may be called with strcmp
passed as the comparison function:

char *cities[] = {"Boston", "London", "Sydney", "Tokyo"};
cout << BinSearch("Sydney", cities, 4, strcmp) << '\n';

This will output 2 as expected. ¨

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 77

References

A reference introduces an alias for an object. The notation for defining references
is similar to that of pointers, except that & is used instead of *. For example,

double num1 = 3.14;
double &num2 = num1; // num is a reference to num1

defines num2 as a reference to num1. After this definition num1 and num2 both refer
to the same object, as if they were the same variable. It should be emphasized that
a reference does not create a copy of an object, but merely a symbolic alias for it.
Hence, after

num1 = 0.16;

both num1 and num2 will denote the value 0.16.
A reference must always be initialized when it is defined: it should be an alias

for something. It would be illegal to define a reference and initialize it later.

double &num3; // illegal: reference without an initializer
num3 = num1;

You can also initialize a reference to a constant. In this case a copy of the
constant is made (after any necessary type conversion) and the reference is set to
refer to the copy.

int &n = 1; // n refers to a copy of 1

The reason that n becomes a reference to a copy of 1 rather than 1 itself is safety.
Consider what could happen if this were not the case.

int &x = 1;
++x;
int y = x + 1;

The 1 in the first and the 1 in the third line are likely to be the same object (most
compilers do constant optimization and allocate both 1’s in the same memory
location). So although we expect y to be 3, it could turn out to be 4. However, by
forcing x to be a copy of 1, the compiler guarantees that the object denoted by x
will be different from both 1’s.

The most common use of references is for function parameters. Reference
parameters facilitates the pass-by-reference style of arguments, as opposed to the
pass-by-value style which we have used so far. To observe the differences,
consider the three swap functions in Listing 5.21.

Listing 5.21

78 C++ Essentials Copyright © 2005 PragSoft

1
 2
3

 4
5
6

7
8
9

10
11
12

13
14
15
16
17
18

void Swap1 (int x, int y) // pass-by-value (objects)
{

int temp = x;
x = y;
y = temp;

}

void Swap2 (int *x, int *y) // pass-by-value (pointers)
{

int temp = *x;
*x = *y;
*y = temp;

}

void Swap3 (int &x, int &y) // pass-by-reference
{

int temp = x;
x = y;
y = temp;

}
Annotation

1 Although Swap1 swaps x and y, this has no effect on the arguments passed to
the function, because Swap1 receives a copy of the arguments. What happens
to the copy does not affect the original.

7 Swap2 overcomes the problem of Swap1 by using pointer parameters instead.
By dereferencing the pointers, Swap2 gets to the original values and swaps
them.

13 Swap3 overcomes the problem of Swap1 by using reference parameters
instead. The parameters become aliases for the arguments passed to the
function and therefore swap them as intended.

Swap3 has the added advantage that its call syntax is the same as Swap1 and
involves no addressing or dereferencing. The following main function illustrates the
differences:

int main (void)
{

int i = 10, j = 20;
 Swap1(i, j); cout << i << ", " << j << '\n';

Swap2(&i, &j); cout << i << ", " << j << '\n';
Swap3(i, j); cout << i << ", " << j << '\n';

}

When run, it will produce the following output:

10, 20
20, 10
10, 20 ¨

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 79

Typedefs

Typedef is a syntactic facility for introducing symbolic names for data types. Just as
a reference defines an alias for an object, a typedef defines an alias for a type. Its
main use is to simplify otherwise complicated type declarations as an aid to
improved readability. Here are a few examples:

typedef char *String;
Typedef char Name[12];
typedef unsigned int uint;

The effect of these definitions is that String becomes an alias for char*, Name
becomes an alias for an array of 12 chars, and uint becomes an alias for
unsigned int. Therefore:

String str; // is the same as: char *str;
Name name; // is the same as: char name[12];
uint n; // is the same as: unsigned int n;

The complicated declaration of Compare in Listing 5.20 is a good candidate
for typedef:

typedef int (*Compare)(const char*, const char*);

int BinSearch (char *item, char *table[], int n, Compare comp)
{

//...
if ((cmp = comp(item, table[mid])) == 0)

return mid;
//...

}

The typedef introduces Compare as a new type name for any function with the
given prototype. This makes BinSearch’s signature arguably simpler.

¨

80 C++ Essentials Copyright © 2005 PragSoft

Exercises

5.24 Define two functions which, respectively, input values for the elements of an array
of reals and output the array elements:

void ReadArray (double nums[], const int size);
void WriteArray (double nums[], const int size);

5.25 Define a function which reverses the order of the elements of an array of reals:
void Reverse (double nums[], const int size);

5.26 The following table specifies the major contents of four brands of breakfast cereals.
Define a two-dimensional array to capture this data:

Fiber Sugar Fat Salt
Top Flake 12g 25g 16g 0.4g
Cornabix 22g 4g 8g 0.3g
Oatabix 28g 5g 9g 0.5g
Ultrabran 32g 7g 2g 0.2g

Write a function which outputs this table element by element.

5.27 Define a function to input a list of names and store them as dynamically-allocated
strings in an array, and a function to output them:

void ReadNames (char *names[], const int size);
void WriteNames (char *names[], const int size);

Write another function which sorts the list using bubble sort:

void BubbleSort (char *names[], const int size);

Bubble sort involves repeated scans of the list, where during each scan adjacent
items are compared and swapped if out of order. A scan which involves no
swapping indicates that the list is sorted.

5.28 Rewrite the following function using pointer arithmetic:

char* ReverseString (char *str)
{

int len = strlen(str);
char *result = new char[len + 1];

for (register i = 0; i < len; ++i)
result[i] = str[len - i - 1];

result[len] = '\0';
return result;

}

www.pragsoft.com Chapter 5: Arrays, Pointers, and References 81

5.29 Rewrite BubbleSort (from 5.27) so that it uses a function pointer for comparison of
names.

5.30 Rewrite the following using typedefs:

void (*Swap)(double, double);
char *table[];
char *&name;
usigned long *values[10][20];

¨

82 C++ Essentials Copyright © 2005 PragSoft

6. Classes

This chapter introduces the class construct of C++ for defining new data types. A
data type consists of two things:

• A concrete representation of the objects of the type.

• A set of operations for manipulating the objects.

Added to these is the restriction that, other than the designated operations, no
other operation should be able to manipulate the objects. For this reason, we often
say that the operations characterize the type, that is, they decide what can and
what cannot happen to the objects. For the same reason, proper data types as
such are often called abstract data types – abstract because the internal
representation of the objects is hidden from operations that do not belong to the
type.

A class definition consists of two parts: header and body. The class header
specifies the class name and its base classes. (The latter relates to derived classes
and is discussed in Chapter 8.) The class body defines the class members . Two
types of members are supported:

• Data members have the syntax of variable definitions and specify the
representation of class objects.

• Member functions have the syntax of function prototypes and specify the
class operations, also called the class interface.

Class members fall under one of three different access permission categories:

• Public members are accessible by all class users.

• Private members are only accessible by the class members.

• Protected members are only accessible by the class members and the
members of a derived class.

The data type defined by a class is used in exactly the same way as a built-in
type.

www.pragsoft.com Chapter 6: Classes 83

A Simple Class

Listing 6.22 shows the definition of a simple class for representing points in two
dimensions.

Listing 6.22
1

 2
3
4
5
6

class Point {
int xVal, yVal;

public:
void SetPt (int, int);
void OffsetPt (int, int);

};

Annotation

1 This line contains the class header and names the class as Point. A class
definition always begins with the keyword class, followed by the class name.
An open brace marks the beginning of the class body.

2 This line defines two data members, xVal and yVal, both of type int. The
default access permission for a class member is private. Both xVal and yVal
are therefore private.

3 This keyword specifies that from this point onward the class members are
public.

4-5 These two are public member functions. Both have two integer parameters
and a void return type.

6 This brace marks the end of the class body.

The order in which the data and member functions of a class are presented is
largely irrelevant. The above class, for example, may be equivalently written as:

class Point {
public:

void SetPt (int, int);
void OffsetPt (int, int);

private:
int xVal, yVal;

};

The actual definition of the member functions is usually not part of the class
and appears separately. Listing 6.23 shows the separate definition of SetPt and
OffsetPt.

84 C++ Essentials Copyright © 2005 PragSoft

Listing 6.23
1

 2
3
4
5

6
7
8
9

10

void Point::SetPt (int x, int y)
{

xVal = x;
yVal = y;

}

void Point::OffsetPt (int x, int y)
{

xVal += x;
yVal += y;

}

Annotation

1 The definition of a class member function is very similar to a normal function.
The function name should be preceded by the class name and a double-colon.
This identifies SetPt as being a member of Point. The function interface must
match its earlier interface definition within the class (i.e., take two integer
parameters and have the return type void).

3-4 Note how SetPt (being a member of Point) is free to refer to xVal and
yVal. Non-member functions do not have this privilege.

Once a class is defined in this way, its name denotes a new data type, allowing
us to define variables of that type. For example:

Point pt; // pt is an object of class Point
pt.SetPt(10,20); // pt is set to (10,20)
pt.OffsetPt(2,2); // pt becomes (12,22)

Member functions are called using the dot notation: pt.SetPt(10,20) calls
SetPt for the object pt, that is, pt is an implicit argument to SetPt.

By making xVal and yVal private members of the class, we have ensured that
a user of the class cannot manipulate them directly:

pt.xVal = 10; // illegal

This will not compile.
At this stage, we should clearly distinguish between object and class. A class

denotes a type, of which there is only one. An object is an element of a particular
type (class), of which there may be many. For example,

Point pt1, pt2, pt3;

defines three objects (pt1, pt2, and pt3) all of the same class (Point).
Furthermore, operations of a class are applied to objects of that class, but never
the class itself. A class is therefore a concept that has no concrete existence other
than that reflected by its objects. ¨

www.pragsoft.com Chapter 6: Classes 85

Inline Member Functions

Just as global functions may be defined to be inline, so can the member functions of
a class. In the class Point, for example, both member functions are very short
(only two statements). Defining these to be inline improves the efficiency
considerably. A member function is defined to be inline by inserting the keyword
inline before its definition.

inline void Point::SetPt (int x,int y)
{

xVal = x;
yVal = y;

}

An easier way of defining member functions to be inline is to include their
definition inside the class.

class Point {
int xVal, yVal;

public:
void SetPt (int x,int y) { xVal = x; yVal = y; }
void OffsetPt (int x,int y) { xVal += x; yVal += y; }

};

Note that because the function body is included, no semicolon is needed after
the prototype. Furthermore, all function parameters must be named.

¨

86 C++ Essentials Copyright © 2005 PragSoft

Example: A Set Class

A set is an unordered collection of objects with no repetitions. This example shows
how a set may be defined as a class. For simplicity, we will restrict ourselves to
sets of integers with a finite number of elements. Listing 6.24 shows the Set class
definition.

Listing 6.24
1

2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

#include <iostream.h>

const maxCard = 100;
enum Bool {false, true};

class Set {
public:

void EmptySet (void) { card = 0; }
Bool Member (const int);
void AddElem (const int);
void RmvElem (const int);
void Copy (Set&);
Bool Equal (Set&);
void Intersect (Set&, Set&);
void Union (Set&, Set&);
void Print (void);

private:
int elems[maxCard]; // set elements
int card; // set cardinality

};

Annotation

2 MaxCard denotes the maximum number of elements a set may have.

6 EmptySet clears the contents of the set by setting its cardinality to zero.

7 Member checks if a given number is an element of the set.

8 AddElem adds a new element to the set. If the element is already in the set
then nothing happens. Otherwise, it is inserted. Should this result in an
overflow then the element is not inserted.

9 RmvElem removes an existing element from the set, provided that element is
already in the set.

10 Copy copies one set to another. The parameter of this function is a reference
to the destination set.

11 Equal checks if two sets are equal. Two sets are equal if they contain exactly
the same elements (the order of which is immaterial).

www.pragsoft.com Chapter 6: Classes 87

12 Intersect compares two sets to produce a third set (denoted by its last
parameter) whose elements are in both sets. For example, the intersection of
{2,5,3} and {7,5,2} is {2,5}.

 13 Union compares two sets to produce a third set (denoted by its last
parameter) whose elements are in either or both sets. For example, the union
of {2,5,3} and {7,5,2} is {2,5,3,7}.

14 Print prints a set using the conventional mathematical notation. For example,
a set containing the numbers 5, 2, and 10 is printed as {5,2,10}.

16 The elements of the set are represented by the elems array.

17 The cardinality of the set is denoted by card. Only the first card entries in
elems are considered to be valid elements.

The separate definition of the member functions of a class is sometimes
referred to as the implementation of the class. The implementation of the Set
class is as follows.

Bool Set::Member (const int elem)
{

for (register i = 0; i < card; ++i)
if (elems[i] == elem)

return true;
return false;

}

void Set::AddElem (const int elem)
{

if (Member(elem))
return;

if (card < maxCard)
elems[card++] = elem;

else
 cout << "Set overflow\n";
}

void Set::RmvElem (const int elem)
{

for (register i = 0; i < card; ++i)
if (elems[i] == elem) {

for (; i < card-1; ++i) // shift elements left
elems[i] = elems[i+1];

--card;
}

}

void Set::Copy (Set &set)
{

for (register i = 0; i < card; ++i)

88 C++ Essentials Copyright © 2005 PragSoft

set.elems[i] = elems[i];
set.card = card;

}

Bool Set::Equal (Set &set)
{

if (card != set.card)
return false;

for (register i = 0; i < card; ++i)
if (!set.Member(elems[i]))

return false;
return true;

}

void Set::Intersect (Set &set, Set &res)
{

res.card = 0;
for (register i = 0; i < card; ++i)

if (set.Member(elems[i]))
res.elems[res.card++] = elems[i];

}

void Set::Union (Set &set, Set &res)
{

set.Copy(res);
for (register i = 0; i < card; ++i)

res.AddElem(elems[i]);
}

void Set::Print (void)
{

cout << "{";
for (int i = 0; i < card-1; ++i)

cout << elems[i] << ",";
if (card > 0) // no comma after the last element

cout << elems[card-1];
cout << "}\n";

}

The following main function creates three Set objects and exercises some of
its member functions.

int main (void)
{

Set s1, s2, s3;

s1.EmptySet(); s2.EmptySet(); s3.EmptySet();
s1.AddElem(10); s1.AddElem(20); s1.AddElem(30); s1.AddElem(40);
s2.AddElem(30); s2.AddElem(50); s2.AddElem(10); s2.AddElem(60);

cout << "s1 = "; s1.Print();
cout << "s2 = "; s2.Print();

s2.RmvElem(50); cout << "s2 - {50} = "; s2.Print();
if (s1.Member(20)) cout << "20 is in s1\n";

www.pragsoft.com Chapter 6: Classes 89

s1.Intersect(s2,s3); cout << "s1 intsec s2 = "; s3.Print();
s1.Union(s2,s3); cout << "s1 union s2 = "; s3.Print();
if (!s1.Equal(s2)) cout << "s1 /= s2\n";
return 0;

}

When run, the program will produce the following output:

s1 = {10,20,30,40}
s2 = {30,50,10,60}
s2 - {50} = {30,10,60}
20 is in s1
s1 intsec s2 = {10,30}
s1 union s2 = {30,10,60,20,40}
s1 /= s2

¨

90 C++ Essentials Copyright © 2005 PragSoft

Constructors

It is possible to define and at the same time initialize objects of a class. This is
supported by special member functions called constructors. A constructor always
has the same name as the class itself. It never has an explicit return type. For
example,

class Point {
int xVal, yVal;

public:
 Point (int x,int y) {xVal = x; yVal = y;} // constructor

void OffsetPt (int,int);
};

is an alternative definition of the Point class, where SetPt has been replaced by a
constructor, which in turn is defined to be inline.

Now we can define objects of type Point and initialize them at once. This is
in fact compulsory for classes that contain constructors that require arguments:

Point pt1 = Point(10,20);
Point pt2; // illegal!

The former can also be specified in an abbreviated form.

Point pt1(10,20);

A class may have more than one constructor. To avoid ambiguity, however,
each of these must have a unique signature. For example,

class Point {
int xVal, yVal;

public:
 Point (int x, int y) { xVal = x; yVal = y; }
 Point (float, float); // polar coordinates
 Point (void) { xVal = yVal = 0; } // origin

void OffsetPt (int, int);
};

Point::Point (float len, float angle) // polar coordinates
{

xVal = (int) (len * cos(angle));
yVal = (int) (len * sin(angle));

}

offers three different constructors. An object of type Point can be defined using
any of these:

Point pt1(10,20); // cartesian coordinates
Point pt2(60.3,3.14); // polar coordinates
Point pt3; // origin

www.pragsoft.com Chapter 6: Classes 91

The Set class can be improved by using a constructor instead of EmptySet:

class Set {
public:

Set (void) { card = 0; }
//...

};

This has the distinct advantage that the programmer need no longer remember to
call EmptySet. The constructor ensures that every set is initially empty.

The Set class can be further improved by giving the user control over the
maximum size of a set. To do this, we define elems as an integer pointer rather
than an integer array. The constructor can then be given an argument which
specifies the desired size. This means that maxCard will no longer be the same for
all Set objects and therfore needs to become a data member itself:

class Set {
public:

Set (const int size);
//...

private:
int *elems; // set elements

 int maxCard; // maximum cardinality
int card; // set cardinality

};

The constructor simply allocates a dynamic array of the desired size and
initializes maxCard and card accordingly:

Set::Set (const int size)
{

elems = new int[size];
maxCard = size;

 card = 0;
}

It is now possible to define sets of different maximum sizes:

Set ages(10), heights(20), primes(100);

It is important to note that an object’s constructor is applied when the object is
created. This in turn depends on the object’s scope. For example, a global object
is created as soon as program execution commences; an automatic object is
created when its scope is entered; and a dynamic object is created when the new
operator is applied to it. ¨

92 C++ Essentials Copyright © 2005 PragSoft

Destructors

Just as a constructor is used to initialize an object when it is created, a destructor is
used to clean up the object just before it is destroyed. A destructor always has the
same name as the class itself, but is preceded with a ~ symbol. Unlike constructors,
a class may have at most one destructor. A destructor never takes any arguments
and has no explicit return type.

Destructors are generally useful for classes which have pointer data members
which point to memory blocks allocated by the class itself. In such cases it is
important to release member-allocated memory before the object is destroyed. A
destructor can do just that.

For example, our revised version of Set uses a dynamically-allocated array
for the elems member. This memory should be released by a destructor:

class Set {
public:

Set (const int size);
~Set (void) {delete elems;} // destructor

//...
private:

int *elems; // set elements
 int maxCard; // maximum cardinality

int card; // set cardinality
};

Now consider what happens when a Set is defined and used in a function:

void Foo (void)
{

Set s(10);
//...

}

When Foo is called, the constructor for s is invoked, allocating storage for
s.elems and initializing its data members. Next the rest of the body of Foo is
executed. Finally, before Foo returns, the destructor for s is invoked, deleting the
storage occupied by s.elems. Hence, as far as storage allocation is concerned, s
behaves just like an automatic variable of a built-in type, which is created when its
scope is entered and destroyed when its scope is left.

In general, an object’s constructor is applied just before the object is
destroyed. This in turn depends on the object’s scope. For example, a global
object is destroyed when program execution is completed; an automatic object is
destroyed when its scope is left; and a dynamic object is destroyed when the
delete operator is applied to it. ¨

www.pragsoft.com Chapter 6: Classes 93

Friends

Occasionally we may need to grant a function access to the nonpublic members of
a class. Such an access is obtained by declaring the function a friend of the class.
There are two possible reasons for requiring this access:

• It may be the only correct way of defining the function.

• It may be necessary if the function is to be implemented efficiently.

Examples of the first case will be provided in Chapter 7, when we discuss
overloaded input/output operators. An example of the second case is discussed
below.

Suppose that we have defined two variants of the Set class, one for sets of
integers and one for sets of reals:

class IntSet {
public:

//...
private:

int elems[maxCard];
int card;

};

class RealSet {
public:

//...
private:

float elems[maxCard];
int card;

};

We want to define a function, SetToReal, which converts an integer set to a real
set. We can do this by making the function a member of IntSet:

void IntSet::SetToReal (RealSet &set)
{

set.EmptySet();
for (register i = 0; i < card; ++i)

set.AddElem((float) elems[i]);
}

Although this works, the overhead of calling AddElem for every member of the set
may be unacceptable. The implementation can be improved if we could gain access
to the private members of both IntSet and RealSet. This can be arranged by
declaring SetToReal as a friend of RealSet.

class RealSet {
//...
friend void IntSet::SetToReal (RealSet&);

};

94 C++ Essentials Copyright © 2005 PragSoft

void IntSet::SetToReal (RealSet &set)
{

set.card = card;
for (register i = 0; i < card; ++i)

set.elems[i] = (float) elems[i];
}

The extreme case of having all member functions of a class A as friends of
another class B can be expressed in an abbreviated form:

class A;
class B {

//...
friend class A; // abbreviated form

};

Another way of implementing SetToReal is to define it as a global function
which is a friend of both classes:

class IntSet {
//...
friend void SetToReal (IntSet&, RealSet&);

};

class RealSet {
//...
friend void SetToReal (IntSet&, RealSet&);

};

void SetToReal (IntSet &iSet, RealSet &rSet)
{

rSet.card = iSet.card;
for (int i = 0; i < iSet.card; ++i)

rSet.elems[i] = (float) iSet.elems[i];
}

Although a friend declaration appears inside a class, that does not make the
function a member of that class. In general, the position of a friend declaration in a
class is irrelevant: whether it appears in the private, protected, or the public section,
it has the same meaning.

¨

www.pragsoft.com Chapter 6: Classes 95

Default Arguments

As with global functions, a member function of a class may have default arguments.
The same rules apply: all default arguments should be trailing arguments, and the
argument should be an expression consisting of objects defined within the scope in
which the class appears.

For example, a constructor for the Point class may use default arguments to
provide more variations of the way a Point object may be defined:

class Point {
int xVal, yVal;

public:
 Point (int x = 0, int y = 0);

//...
};

Given this constructor, the following definitions are all valid:

Point p1; // same as: p1(0, 0)
Point p2(10); // same as: p2(10, 0)
Point p3(10, 20);

Careless use of default arguments can lead to undesirable ambiguity. For
example, given the class

class Point {
int xVal, yVal;

public:
 Point (int x = 0, int y = 0);
 Point (float x = 0, float y = 0); // polar coordinates

//...
};

the following definition will be rejected as ambiguous, because it matches both
constructors:

Point p; // ambiguous!
¨

96 C++ Essentials Copyright © 2005 PragSoft

Implicit Member Argument

When a class member function is called, it receives an implicit argument which
denotes the particular object (of the class) for which the function is invoked. For
example, in

Point pt(10,20);
pt.OffsetPt(2,2);

pt is an implicit argument to OffsetPt. Within the body of the member function,
one can refer to this implicit argument explicitly as this, which denotes a pointer to
the object for which the member is invoked. Using this, OffsetPt can be
rewritten as:

Point::OffsetPt (int x, int y)
{

this->xVal += x; // equivalent to: xVal += x;
this->yVal += y; // equivalent to: yVal += y;

}

Use of this in this particular example is redundant. There are, however,
programming cases where the use of the this pointer is essential. We will see
examples of such cases in Chapter 7, when discussing overloaded operators.

The this pointer can be used for referring to member functions in exactly the
same way as it is used for data members. It is important to bear in mind, however,
that this is defined for use within member functions of a class only. In particular, it
is undefined for global functions (including global friend functions).

¨

www.pragsoft.com Chapter 6: Classes 97

Scope Operator

When calling a member function, we usually use an abbreviated syntax. For
example:

pt.OffsetPt(2,2); // abbreviated form

This is equivalent to the full form:

pt.Point::OffsetPt(2,2); // full form

The full form uses the binary scope operator :: to indicate that OffsetPt is a
member of Point.

In some situations, using the scope operator is essential. For example, the case
where the name of a class member is hidden by a local variable (e.g., member
function parameter) can be overcome using the scope operator:

class Point {
public:

Point (int x, int y) { Point::x = x; Point::y = y; }
//...

private:
int x, y;

}

Here x and y in the constructor (inner scope) hide x and y in the class (outer
scope). The latter are referred to explicitly as Point::x and Point::y.

¨

98 C++ Essentials Copyright © 2005 PragSoft

Member Initialization List

There are two ways of initializing the data members of a class. The first approach
involves initializing the data members using assignments in the body of a
constructor. For example:

class Image {
public:

Image (const int w, const int h);
private:

int width;
int height;

 //...
};

Image::Image (const int w, const int h)
{

width = w;
height = h;
//...

}

The second approach uses a member initialization list in the definition of a
constructor. For example:

class Image {
public:

Image (const int w, const int h);
private:

int width;
int height;

 //...
};

Image::Image (const int w, const int h) : width(w), height(h)
{

//...
}

The effect of this declaration is that width is initialized to w and height is
initialized to h. The only difference between this approach and the previous one is
that here members are initialized before the body of the constructor is executed.

A member initialization list may be used for initializing any data member of a
class. It is always placed between the constructor header and body. A colon is
used to separate it from the header. It should consist of a comma-separated list of
data members whose initial value appears within a pair of brackets.

¨

www.pragsoft.com Chapter 6: Classes 99

Constant Members

A class data member may defined as constant. For example:

class Image {
const int width;
const int height;

 //...
};

However, data member constants cannot be initialized using the same syntax as for
other constants:

class Image {
const int width = 256; // illegal initializer!
const int height = 168; // illegal initializer!

 //...
};

The correct way to initialize a data member constant is through a member
initialization list:

class Image {
public:

Image (const int w, const int h);
private:

const int width;
const int height;

 //...
};

Image::Image (const int w, const int h) : width(w), height(h)
{

//...
}

As one would expect, no member function is allowed to assign to a constant data
member.

A constant data member is not appropriate for defining the dimension of an
array data member. For example, in

class Set {
public:

Set (void) : maxCard(10) { card = 0; }
//...

private:
const maxCard;
int elems[maxCard]; // illegal!
int card;

};

100 C++ Essentials Copyright © 2005 PragSoft

the array elems will be rejected by the compiler for not having a constant
dimension. The reason for this being that maxCard is not bound to a value during
compilation, but when the program is run and the constructor is invoked.

Member functions may also be defined as constant. This is used to specify
which member functions of a class may be invoked for a constant object. For
example,

class Set {
public:

Set (void) { card = 0; }
Bool Member (const int) const;
void AddElem (const int);
//...

};

Bool Set::Member (const int elem) const
{

//...
}

defines Member as a constant member function. To do so, the keyword const is
inserted after the function header, both inside the class and in the function definition.

A constant object can only be modified by the constant member functions of
the class:

const Set s;
s.AddElem(10); // illegal: AddElem not a const member
s.Member(10); // ok

Given that a constant member function is allowed to be invoked for constant
objects, it would be illegal for it to attempt to modify any of the class data
members.

Constructors and destructors need never be defined as constant members,
since they have permission to operate on constant objects. They are also exempted
from the above rule and can assign to a data member of a constant object, unless
the data member is itself a constant.

¨

www.pragsoft.com Chapter 6: Classes 101

Static Members

A data member of a class can be defined to be static. This ensures that there will
be exactly one copy of the member, shared by all objects of the class. For
example, consider a Window class which represents windows on a bitmap display:

class Window {
static Window *first; // linked-list of all windows
Window *next; // pointer to next window
//...

};

Here, no matter how many objects of type Window are defined, there will be only
one instance of first. Like other static variables, a static data member is by
default initialized to 0. It can be initialized to an arbitrary value in the same scope
where the member function definitions appear:

Window *Window::first = &myWindow;

The alternative is to make such variables global, but this is exactly what static
members are intended to avoid; by including the variable in a class, we can ensure
that it will be inaccessible to anything outside the class.

Member functions can also be defined to be static. Semantically, a static
member function is like a global function which is a friend of the class, but
inaccessible outside the class. It does not receive an implicit argument and hence
cannot refer to this. Static member functions are useful for defining call-back
routines whose parameter lists are predetermined and outside the control of the
programmer.

For example, the Window class might use a call-back function for repainting
exposed areas of the window:

class Window {
//...
static void PaintProc (Event *event); // call-back

};

Because static members are shared and do not rely on the this pointer, they
are best referred to using the class::member syntax. For example, first and
PaintProc would be referred to as Window::first and Window::PaintProc.
Public static members can be referred to using this syntax by nonmember functions
(e.g., global functions).

¨

102 C++ Essentials Copyright © 2005 PragSoft

Member Pointers

Recall how a function pointer was used in Chapter 5 to pass the address of a
comparison function to a search function. It is possible to obtain and manipulate the
address of a member function of a class in a similar fashion. As before, the idea is
to make a function more flexible by making it independent of another function.

The syntax for defining a pointer to a member function is slightly more
complicated, since the class name must also be included in the function pointer
type. For example,

typedef int (Table::*Compare)(const char*, const char*);

defines a member function pointer type called Compare for a class called Table.
This type will match the address of any member function of Table which takes two
constant character pointers and returns an int. Compare may be used for passing
a pointer to a Search member of Table:

class Table {
public:

Table (const int slots);
int Search (char *item, Compare comp);

int CaseSesitiveComp (const char*, const char*);
int NormalizedComp (const char*, const char*);

private:
int slots;
char **entries;

};

The definition of Table includes two sample comparison member functions which
can be passed to Search. Search has to use a slightly complicated syntax for
invoking the comparison function via comp:

int Table::Search (char *item, Compare comp)
{

int bot = 0;
int top = slots - 1;
int mid, cmp;

while (bot <= top) {
mid = (bot + top) / 2;
if ((cmp = (this->*comp)(item, entries[mid])) == 0)

return mid; // return item index
else if (cmp < 0)

top = mid - 1; // restrict search to lower half
else

bot = mid + 1; // restrict search to upper half
}
return -1; // not found

}

www.pragsoft.com Chapter 6: Classes 103

Note that comp can only be invoked via a Table object (the this pointer is
used in this case). None of the following attempts, though seemingly reasonable,
will work:

(*comp)(item, entries[mid]); // illegal: no class object!
(Table::*comp)(item, entries[mid]); // illegal: no class object!
this->*comp(item, entries[mid]); // illegal: need brackets!

The last attempt will be interpreted as:

this->*(comp(item, entries[mid])); // unintended precedence!

Therefore the brackets around this->*comp are necessary. Using a Table object
instead of this will require the following syntax:

Table tab(10);
(tab.*comp)(item, entries[mid])

Search can be called and passed either of the two comparison member
functions of Table. For example:

tab.Search("Sydney", Table::NormalizedComp);

The address of a data member can be obtained using the same syntax as for a
member function. For example,

int Table::*n = &Table::slots;
int m = this->*n;
int p = tab.*n;

The above class member pointer syntax applies to all members except for
static. Static members are essentially global entities whose scope has been limited
to a class. Pointers to static members use the conventional syntax of global entities.

In general, the same protection rules apply as before: to take the address of a
class member (data or function) one should have access to it. For example, a
function which does not have access to the private members of a class cannot take
the address of any of those members.

¨

104 C++ Essentials Copyright © 2005 PragSoft

References Members

A class data member may defined as reference. For example:

class Image {
int width;
int height;
int &widthRef;

 //...
};

As with data member constants, a data member reference cannot be initialized
using the same syntax as for other references:

class Image {
int width;
int height;
int &widthRef = width; // illegal!

 //...
};

The correct way to initialize a data member reference is through a member
initialization list:

class Image {
public:

Image (const int w, const int h);
private:

int width;
int height;
int &widthRef;

 //...
};

Image::Image (const int w, const int h) : widthRef(width)
{

//...
}

This causes widthRef to be a reference for width.
¨

www.pragsoft.com Chapter 6: Classes 105

Class Object Members

A data member of a class may be of a user-defined type, that is, an object of
another class. For example, a Rectangle class may be defined using two Point
data members which represent the top-left and bottom-right corners of the
rectangle:

class Rectangle {
public:

Rectangle (int left, int top, int right, int bottom);
//...

private:
Point topLeft;
Point botRight;

};

The constructor for Rectangle should also initialize the two object members of
the class. Assuming that Point has a constructor, this is done by including
topLeft and botRight in the member initialization list of the constructor for
Rectangle:

Rectangle::Rectangle (int left, int top, int right, int bottom)
: topLeft(left,top), botRight(right,bottom)

{
}

If the constructor for Point takes no parameters, or if it has default arguments for
all of its parameters, then the above member initialization list may be omitted. Of
course, the constructor is still implicitly called.

The order of initialization is always as follows. First, the constructor for
topLeft is invoked, followed by the constructor for botRight, and finally the
constructor for Rectangle itself. Object destruction always follows the opposite
direction. First the destructor for Rectangle (if any) is invoked, followed by the
destructor for botRight, and finally for topLeft. The reason that topLeft is
initialized before botRight is not that it appears first in the member initialization
list, but because it appears before botRight in the class itself. Therefore, defining
the constructor as follows would not change the initialization (or destruction) order:

Rectangle::Rectangle (int left, int top, int right, int bottom)
: botRight(right,bottom), topLeft(left,top)

{
}

¨

106 C++ Essentials Copyright © 2005 PragSoft

Object Arrays

An array of a user-defined type is defined and used much in the same way as an
array of a built-in type. For example, a pentagon can be defined as an array of 5
points:

Point pentagon[5];

This definition assumes that Point has an ‘argument-less’ constructor (i.e., one
which can be invoked without arguments). The constructor is applied to each
element of the array.

The array can also be initialized using a normal array initializer. Each entry in
the initialization list would invoke the constructor with the desired arguments. When
the initializer has less entries than the array dimension, the remaining elements are
initialized by the argument-less constructor. For example,

Point pentagon[5] = {
Point(10,20), Point(10,30), Point(20,30), Point(30,20)

};

initializes the first four elements of pentagon to explicit points, and the last element
is initialized to (0,0).

When the constructor can be invoked with a single argument, it is sufficient to
just specify the argument. For example,

Set sets[4] = {10, 20, 20, 30};

is an abbreviated version of:

Set sets[4] = {Set(10), Set(20), Set(20), Set(30)};

An array of objects can also be created dynamically using new:

Point *petagon = new Point[5];

When the array is finally deleted using delete, a pair of [] should be included:

delete [] pentagon; // destroys all array elements

Unless the [] is included, delete will have no way of knowing that pentagon
denotes an array of points and not just a single point. The destructor (if any) is
applied to the elements of the array in reverse order before the array is deleted.
Omitting the [] will cause the destructor to be applied to just the first element of
the array:

delete pentagon; // destroys only the first element!

www.pragsoft.com Chapter 6: Classes 107

Since the objects of a dynamic array cannot be explicitly initialized at the time
of creation, the class must have an argument-less constructor to handle the implicit
initialization. When this implicit initialization is insufficient, the programmer can
explicitly reinitialize any of the elements later:

pentagon[0].Point(10, 20);
pentagon[1].Point(10, 30);
//...

Dynamic object arrays are useful in circumstances where we cannot
predetermine the size of the array. For example, a general polygon class has no
way of knowing in advance how many vertices a polygon may have:

class Polygon {
public:

//...
private:

Point *vertices; // the vertices
int nVertices; // the number of vertices

};
¨

108 C++ Essentials Copyright © 2005 PragSoft

Class Scope

A class introduces a class scope much in the same way a function (or block)
introduces a local scope. All the class members belong to the class scope and thus
hide entities with identical names in the enclosing scope. For example, in

int fork (void); // system fork

class Process {
int fork (void);
//...

};

the member function fork hides the global system function fork. The former can
refer to the latter using the unary scope operator:

int Process::fork (void)
{

int pid = ::fork(); // use global system fork
//...

}

A class itself may be defined at any one of three possible scopes:

• At the global scope. This leads to a global class, whereby it can be referred
to by all other scopes. The great majority of C++ classes (including all the
examples presented so far in this chapter) are defined at the global scope.

• At the class scope of another class. This leads to a nested class, where a
class is contained by another class.

• At the local scope of a block or function. This leads to a local class, where
the class is completely contained by a block or function.

A nested class is useful when a class is used only by one other class. For
example,

class Rectangle { // a nested class
public:

Rectangle (int, int, int, int);
//..

private:
class Point {
public:

Point (int, int);
 private:

int x, y;
};
Point topLeft, botRight;

};

www.pragsoft.com Chapter 6: Classes 109

defines Point as nested by Rectangle. The member functions of Point may be
defined either inline inside the Point class or at the global scope. The latter would
require further qualification of the member function names by preceding them with
Rectangle::

Rectangle::Point::Point (int x, int y)
{

//...
}

A nested class may still be accessed outside its enclosing class by fully
qualifying the class name. The following, for example, would be valid at any scope
(assuming that Point is made public within Rectangle):

Rectangle::Point pt(1,1);

A local class is useful when a class is used by only one function — be it a
global function or a member function — or even just one block. For example,

void Render (Image &image)
{

class ColorTable {
 public:

ColorTable (void) { /* ... */ }
AddEntry (int r, int g, int b) { /* ... */ }
//...

};

ColorTable colors;
//...

}

defines ColorTable as a class local to Render.
Unlike a nested class, a local class is not accessible outside the scope within

which it is defined. The following, therefore, would be illegal at the global scope:

ColorTable ct; // undefined!

A local class must be completely defined inside the scope in which it appears.
All of its functions members, therefore, need to be defined inline inside the class.
This implies that a local scope is not suitable for defining anything but very simple
classes.

¨

110 C++ Essentials Copyright © 2005 PragSoft

Structures and Unions

A structure is a class all of whose members are by default public. (Remember that
all of the members of a class are by default private.) Structures are defined using
the same syntax as classes, except that the keyword struct is used instead of
class. For example,

struct Point {
 Point (int, int);

void OffsetPt (int, int);
int x, y;

};

is equivalent to:

class Point {
public:

 Point (int, int);
void OffsetPt (int, int);
int x, y;

};

The struct construct originated in C, where it could only contain data
members. It has been retained mainly for backward compatibility reasons. In C, a
structure can have an initializer with a syntax similar to that of an array. C++ allows
such initializers for structures and classes all of whose data members are public:

class Employee {
public:

char *name;
int age;
double salary;

};

Employee emp = {"Jack", 24, 38952.25};

The initializer consists of values which are assigned to the data members of the
structure (or class) in the order they appear. This style of initialization is largely
superseded by constructors. Furthermore, it cannot be used with a class that has a
constructor.

A union is a class all of whose data members are mapped to the same
address within its object (rather than sequentially as is the case in a class). The size
of an object of a union is, therefore, the size of its largest data member.

The main use of unions is for situations where an object may assume values of
different types, but only one at a time. For example, consider an interpreter for a
simple programming language, called P, which supports a number of data types
such as: integers, reals, strings, and lists. A value in this language may be defined to
be of the type:

www.pragsoft.com Chapter 6: Classes 111

union Value {
long integer;
double real;
char *string;
Pair list;
//...

};

where Pair is itself a user-defined type for creating lists:

class Pair {
Value *head;
Value *tail;
//...

};

Assuming that a long is 4 bytes, a double 8 bytes, and a pointer 4 bytes, an
object of type Value would be exactly 8 bytes, i.e., the same as the size of a
double or a Pair object (the latter being equal to two pointers).

An object in P can be represented by the class,

class Object {
private:

enum ObjType {intObj, realObj, strObj, listObj};
ObjType type; // object type
Value val; // object value
//...

};

where type provides a way of recording what type of value the object currently
has. For example, when type is set to strObj, val.string is used for referring
to its value.

Because of the unique way in which its data members are mapped to memory,
a union may not have a static data member or a data member which requires a
constructor.

Like a structure, all of the members of a union are by default public. The
keywords private, public, and protected may be used inside a struct or a
union in exactly the same way they are used inside a class for defining private,
public, and protected members.

¨

112 C++ Essentials Copyright © 2005 PragSoft

Bit Fields

It is sometimes desirable to directly control an object at the bit level, so that as
many individual data items as possible can be packed into a bit stream without
worrying about byte or word boundaries.

For example, in data communication, data is transferred in discrete units called
packets. In addition to the user data that it carries, each packet also contains a
header which is comprised of network-related information for managing the
transmission of the packet across the network. To minimize the cost of
transmission, it is desirable to minimize the space taken by the header. Figure 6.9
illustrates how the header fields are packed into adjacent bits to achieve this.

Figure 6.9 Header fields of a packet.

type

acknowledge

channel

sequenceNo

moreData

These fields can be expressed as bit field data members of a Packet class. A
bit field may be defined to be of type int or unsigned int:

typedef unsigned int Bit;

class Packet {
Bit type : 2; // 2 bits wide
Bit acknowledge : 1; // 1 bit wide
Bit channel : 4; // 4 bits wide
Bit sequenceNo : 4; // 4 bite wide
Bit moreData : 1; // 1 bit wide
//...

};

A bit field is referred to in exactly the same way as any other data member.
Because a bit field does not necessarily start on a byte boundary, it is illegal to take
its address. For the same reason, a bit field cannot be defined as static.

Use of enumerations can make working with bit fields easier. For example,
given the enumerations

enum PacketType {dataPack, controlPack, supervisoryPack};
enum Bool {false, true};

we can write:

Packet p;
p.type = controlPack;
p.acknowledge = true; ¨

www.pragsoft.com Chapter 6: Classes 113

Exercises

6.31 Explain why the Set parameters of the Set member functions are declared as
references.

6.32 Define a class named Complex for representing complex numbers. A complex
number has the general form a + ib, where a is the real part and b is the imaginary
part (i stands for imaginary). Complex arithmetic rules are as follows:

(a + ib) + (c + id) = (a + c) + i(b + d)
(a + ib) – (c + id) = (a + c) – i(b + d)
(a + ib) * (c + id) = (ac – bd) + i(bc + ad)

Define these operations as member functions of Complex.

6.33 Define a class named Menu which uses a linked-list of strings to represent a menu
of options. Use a nested class, Option, to represent the set elements. Define a
constructor, a destructor, and the following member functions for Menu:

• Insert which inserts a new option at a given position. Provide a default
argument so that the item is appended to the end.

• Delete which deletes an existing option.

• Choose which displays the menu and invites the user to choose an option.

6.34 Redefine the Set class as a linked-list so that there would be no restriction on the
number of elements a set may have. Use a nested class, Element, to represent the
set elements.

6.35 Define a class named Sequence for storing sorted strings. Define a constructor, a
destructor, and the following member functions for Sequence:

• Insert which inserts a new string into its sort position.

• Delete which deletes an existing string.

• Find which searches the sequence for a given string and returns true if it finds
it, and false otherwise.

• Print which prints the sequence strings.

6.36 Define class named BinTree for storing sorted strings as a binary tree. Define the
same set of member functions as for Sequence from the previous exercise.

114 C++ Essentials Copyright © 2005 PragSoft

6.37 Define a member function for BinTree which converts a sequence to a binary tree,
as a friend of Sequence. Use this function to define a constructor for BinTree
which takes a sequence as argument.

6.38 Add an integer ID data member to the Menu class (Exercise 6.33) so that all menu
objects are sequentially numbered, starting from 0. Define an inline member
function which returns the ID. How will you keep track of the last allocated ID?

6.39 Modify the Menu class so that an option can itself be a menu, thereby allowing
nested menus.

¨

www.pragsoft.com Chapter 7: Overloading 115

7. Overloading

This chapter discusses the overloading of functions and operators in C++. The term
overloading means ‘providing multiple definitions of’. Overloading of functions
involves defining distinct functions which share the same name, each of which has a
unique signature. Function overloading is appropriate for:

• Defining functions which essentially do the same thing, but operate on different
data types.

• Providing alternate interfaces to the same function.

Function overloading is purely a programming convenience.
Operators are similar to functions in that they take operands (arguments) and

return a value. Most of the built-in C++ operators are already overloaded. For
example, the + operator can be used to add two integers, two reals, or two
addresses. Therefore, it has multiple definitions. The built-in definitions of the
operators are restricted to built-in types. Additional definitions can be provided by
the programmer, so that they can also operate on user-defined types. Each
additional definition is implemented by a function.

The overloading of operators will be illustrated using a number of simple
classes. We will discuss how type conversion rules can be used to reduce the need
for multiple overloadings of the same operator. We will present examples of
overloading a number of popular operators, including << and >> for IO, [] and ()
for container classes, and the pointer operators. We will also discuss memberwise
initialization and assignment, and the importance of their correct implementation in
classes which use dynamically-allocated data members.

Unlike functions and operators, classes cannot be overloaded; each class must
have a unique name. However, as we will see in Chapter 8, classes can be altered
and extended through a facility called inheritance. Also functions and classes can
be written as templates, so that they become independent of the data types they
employ. We will discuss templates in Chapter 9.

116 C++ Essentials Copyright © 2005 PragSoft

Function Overloading

Consider a function, GetTime, which returns in its parameter(s) the current time of
the day, and suppose that we require two variants of this function: one which
returns the time as seconds from midnight, and one which returns the time as hours,
minutes, and seconds. Given that these two functions serve the same purpose, there
is no reason for them to have different names.

C++ allows functions to be overloaded, that is, the same function to have
more than one definition:

long GetTime (void); // seconds from midnight
void GetTime (int &hours, int &minutes, int &seconds);

When GetTime is called, the compiler compares the number and type of
arguments in the call against the definitions of GetTime and chooses the one that
matches the call. For example:

int h, m, s;
long t = GetTime(); // matches GetTime(void)
GetTime(h, m, s); // matches GetTime(int&, int&, int&);

To avoid ambiguity, each definition of an overloaded function must have a
unique signature.

Member functions of a class may also be overloaded:

class Time {
//...
long GetTime (void); // seconds from midnight
void GetTime (int &hours, int &minutes, int &seconds);

};

Function overloading is useful for obtaining flavors that are not possible using
default arguments alone. Overloaded functions may also have default arguments:

void Error (int errCode, char *errMsg = "");
void Error (char *errMsg);

¨

www.pragsoft.com Chapter 7: Overloading 117

Operator Overloading

C++ allows the programmer to define additional meanings for its predefined
operators by overloading them. For example, we can overload the + and -
operators for adding and subtracting Point objects:

class Point {
public:

Point (int x, int y) {Point::x = x; Point::y = y;}
Point operator + (Point &p) {return Point(x + p.x,y + p.y);}
Point operator - (Point &p) {return Point(x - p.x,y - p.y);}

private:
int x, y;

};

After this definition, + and - can be used for adding and subtracting points, much in
the same way as they are used for adding and subtracting numbers:

Point p1(10,20), p2(10,20);
Point p3 = p1 + p2;
Point p4 = p1 - p2;

The above overloading of + and - uses member functions. Alternatively, an
operator may be overloaded globally:

class Point {
public:

Point (int x, int y) {Point::x = x; Point::y = y;}
friend Point operator + (Point &p, Point &q)

{return Point(p.x + q.x,p.y + q.y);}
friend Point operator - (Point &p, Point &q)

{return Point(p.x - q.x,p.y - q.y);}
private:

int x, y;
};

The use of an overloaded operator is equivalent to an explicit call to the
function which implements it. For example:

operator+(p1, p2) // is equivalent to: p1 + p2

In general, to overload a predefined operator λ, we define a function named
operatorλ . If λ is a binary operator:

• operatorλ must take exactly one argument if defined as a class member, or
two arguments if defined globally.

However, if λ is a unary operator:

118 C++ Essentials Copyright © 2005 PragSoft

• operatorλ must take no arguments if defined as a member function, or one
argument if defined globally.

Table 7.10 summarizes the C++ operators which can be overloaded. The
remaining five operators cannot be overloaded:

. .* :: ?: sizeof // not overloadable

Figure 7.10 Overloadable operators.

Unary: + - * ! ~ & ++ -- () -> -
>*

ne
w

delete

Binary: + - * / % & | ^ << >>
= += -= /= %= &= |= ^= <<

=
>>
=

== != < > <= >= && || [] () ,

A strictly unary operator (e.g., ~) cannot be overloaded as binary, nor can a
strictly binary operator (e.g., =) be overloaded as unary.

C++ does not support the definition of new operator tokens, because this can
lead to ambiguity. Furthermore, the precedence rules for the predefined operators
is fixed and cannot be altered. For example, no matter how you overload *, it will
always have a higher precedence than +.

Operators ++ and -- can be overloaded as prefix as well as postfix.
Equivalence rules do not hold for overloaded operators. For example, overloading
+ does not affect +=, unless the latter is also explicitly overloaded. Operators ->, =,
[], and () can only be overloaded as member functions, and not globally.

To avoid the copying of large objects when passing them to an overloaded
operator, references should be used. Pointers are not suitable for this purpose
because an overloaded operator cannot operate exclusively on pointers.

¨

www.pragsoft.com Chapter 7: Overloading 119

Example: Set Operators

The Set class was introduced in Chapter 6. Most of the Set member functions are
better defined as overloaded operators. Listing 7.25 illustrates.

Listing 7.25
1

2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#include <iostream.h>

const maxCard = 100;
enum Bool {false, true};

class Set {
public:

Set (void) { card = 0; }
friend Bool operator & (const int, Set&); // membership
friend Bool operator == (Set&, Set&); // equality
friend Bool operator != (Set&, Set&); // inequality
friend Set operator * (Set&, Set&); // intersection
friend Set operator + (Set&, Set&); // union
//...
void AddElem (const int elem);
void Copy (Set &set);

 void Print (void);
private:

int elems[maxCard]; // set elements
int card; // set cardinality

};

Here, we have decided to define the operator functions as global friends. They
could have just as easily been defined as member functions. The implementation of
these functions is as follow.

Bool operator & (const int elem, Set &set)
{

for (register i = 0; i < set.card; ++i)
if (elem == set.elems[i])

return true;
return false;

}

Bool operator == (Set &set1, Set &set2)
{

if (set1.card != set2.card)
return false;

for (register i = 0; i < set1.card; ++i)
if (!(set1.elems[i] & set2)) // use overloaded &

return false;
return true;

}

Bool operator != (Set &set1, Set &set2)
{

return !(set1 == set2); // use overloaded ==
}

120 C++ Essentials Copyright © 2005 PragSoft

Set operator * (Set &set1, Set &set2)
{

Set res;

for (register i = 0; i < set1.card; ++i)
if (set1.elems[i] & set2) // use overloaded &

res.elems[res.card++] = set1.elems[i];
 return res;
}

Set operator + (Set &set1, Set &set2)
{

Set res;

set1.Copy(res);
for (register i = 0; i < set2.card; ++i)

res.AddElem(set2.elems[i]);
return res;

}

The syntax for using these operators is arguably neater than those of the
functions they replace, as illustrated by the following main function:

int main (void)
{

Set s1, s2, s3;

s1.AddElem(10); s1.AddElem(20); s1.AddElem(30); s1.AddElem(40);
s2.AddElem(30); s2.AddElem(50); s2.AddElem(10); s2.AddElem(60);

cout << "s1 = "; s1.Print();
cout << "s2 = "; s2.Print();

if (20 & s1) cout << "20 is in s1\n";

cout << "s1 intsec s2 = "; (s1 * s2).Print();
cout << "s1 union s2 = "; (s1 + s2).Print();

if (s1 != s2) cout << "s1 /= s2\n";
return 0;

}

When run, the program will produce the following output:

s1 = {10,20,30,40}
s2 = {30,50,10,60}
20 is in s1
s1 intsec s2 = {10,30}
s1 union s2 = {10,20,30,40,50,60}
s1 /= s2

¨

www.pragsoft.com Chapter 7: Overloading 121

Type Conversion

The normal built-in type conversion rules of the language also apply to overloaded
functions and operators. For example, in

if ('a' & set)
//...

the first operand of & (i.e., 'a') is implicitly converted from char to int, because
overloaded & expects its first operand to be of type int.

Any other type conversion required in addition to these must be explicitly
defined by the programmer. For example, suppose we want to overload + for the
Point type so that it can be used to add two points, or to add an integer value to
both coordinates of a point:

class Point {
//...
friend Point operator + (Point, Point);
friend Point operator + (int, Point);
friend Point operator + (Point, int);

};

To make + commutative, we have defined two functions for adding an integer to a
point: one for when the integer is the first operand, and one for when the integer is
the second operand. It should be obvious that if we start considering other types in
addition to int, this approach will ultimately lead to an unmanageable variations of
the operator.

A better approach is to use a constructor to convert the object to the same
type as the class itself so that one overloaded operator can handle the job. In this
case, we need a constructor which takes an int, specifying both coordinates of a
point:

class Point {
//...
Point (int x) { Point::x = Point::y = x; }
friend Point operator + (Point, Point);

};

For constructors of one argument, one need not explicitly call the constructor:

Point p = 10; // equivalent to: Point p(10);

Hence, it is possible to write expressions that involve variables or constants of type
Point and int using the + operator.

Point p(10,20), q = 0;
q = p + 5; // equivalent to: q = p + Point(5);

122 C++ Essentials Copyright © 2005 PragSoft

Here, 5 is first converted to a temporary Point object and then added to p. The
temporary object is then destroyed. The overall effect is an implicit type
conversion from int to Point. The final value of q is therefore (15,25).

What if we want to do the opposite conversion, from the class type to another
type? In this case, constructors cannot be used because they always return an
object of the class to which they belong. Instead, one can define a member function
which explicitly converts the object to the desired type.

For example, given a Rectangle class, we can define a type conversion
function which converts a rectangle to a point, by overloading the type operator
Point in Rectangle:

class Rectangle {
public:

Rectangle (int left, int top, int right, int bottom);
 Rectangle (Point &p, Point &q);

//...
 operator Point () {return botRight - topLeft;}

private:
Point topLeft;
Point botRight;

};

This operator is defined to convert a rectangle to a point, whose coordinates
represent the width and height of the rectangle. Therefore, in the code fragment

Point p(5,5);
Rectangle r(10,10,20,30);
r + p;

rectangle r is first implicitly converted to a Point object by the type conversion
operator, and then added to p.

The type conversion Point can also be applied explicitly using the normal
type cast notation. For example:

Point(r); // explicit type-cast to a Point
(Point)r; // explicit type-cast to a Point

In general, given a user-defined type X and another (built-in or user-defined)
type Y:

• A constructor defined for X which takes a single argument of type Y will
implicitly convert Y objects to X objects when needed.

• Overloading the type operator Y in X will implicitly convert X objects to Y
objects when needed.

class X {
//...
X (Y&); // convert Y to X

www.pragsoft.com Chapter 7: Overloading 123

operator Y (); // convert X to Y
};

One of the disadvantages of user-defined type conversion methods is that,
unless they are used sparingly, they can lead to programs whose behaviors can be
very difficult to predict. There is also the additional risk of creating ambiguity.
Ambiguity occurs when the compiler has more than one option open to it for
applying user-defined type conversion rules, and therefore unable to choose. All
such cases are reported as errors by the compiler.

To illustrate possible ambiguities that can occur, suppose that we also define a
type conversion constructor for Rectangle (which takes a Point argument) as
well as overloading the + and - operators:

class Rectangle {
public:

Rectangle (int left, int top, int right, int bottom);
 Rectangle (Point &p, Point &q);

Rectangle (Point &p);

 operator Point () {return botRight - topLeft;}
friend Rectangle operator + (Rectangle &r, Rectangle &t);
friend Rectangle operator - (Rectangle &r, Rectangle &t);

private:
Point topLeft;
Point botRight;

};

Now, in

Point p(5,5);
Rectangle r(10,10,20,30);
r + p;

r + p can be interpreted in two ways. Either as

r + Rectangle(p) // yields a Rectangle

or as:

Point(r) + p // yields a Point

Unless the programmer resolves the ambiguity by explicit type conversion, this will
be rejected by the compiler.

¨

124 C++ Essentials Copyright © 2005 PragSoft

Example: Binary Number Class

Listing 7.26 defines a class for representing 16-bit binary numbers as sequences of
0 and 1 characters.

Listing 7.26
1
2

3

4
5
6
7
8
9

10
11
12
13

#include <iostream.h>
#include <string.h>

int const binSize = 16;

class Binary {
public:

Binary (const char*);
Binary (unsigned int);

friend Binary operator + (const Binary, const Binary);
operator int (); // type conversion

void Print (void);
private:

char bits[binSize]; // binary quantity
};

Annotation

6 This constructor produces a binary number from its bit pattern.

7 This constructor converts a positive integer to its equivalent binary
representation.

8 The + operator is overloaded for adding two binary numbers. Addition is done
bit by bit. For simplicity, no attempt is made to detect overflows.

9 This type conversion operator is used to convert a Binary object to an int
object.

10 This function simply prints the bit pattern of a binary number.

12 This array is used to hold the 0 and 1 bits of the 16-bit quantity as characters.

The implementation of these functions is as follows:

Binary::Binary (const char *num)
{

int iSrc = strlen(num) - 1;
int iDest = binSize - 1;

while (iSrc >= 0 && iDest >= 0) // copy bits
 bits[iDest--] = (num[iSrc--] == '0' ? '0' : '1');
while (iDest >= 0) // pad left with zeros
 bits[iDest--] = '0';

}

Binary::Binary (unsigned int num)
{

www.pragsoft.com Chapter 7: Overloading 125

for (register i = binSize - 1; i >= 0; --i) {
 bits[i] = (num % 2 == 0 ? '0' : '1');
 num >>= 1;
}

}

Binary operator + (const Binary n1, const Binary n2)
{

unsigned carry = 0;
unsigned value;
Binary res = "0";

for (register i = binSize - 1; i >= 0; --i) {
 value = (n1.bits[i] == '0' ? 0 : 1) +
 (n2.bits[i] == '0' ? 0 : 1) + carry;
 res.bits[i] = (value % 2 == 0 ? '0' : '1');
 carry = value >> 1;
}
return res;

}

Binary::operator int ()
{

unsigned value = 0;

for (register i = 0; i < binSize; ++i)
 value = (value << 1) + (bits[i] == '0' ? 0 : 1);
return value;

}

void Binary::Print (void)
{

char str[binSize + 1];
strncpy(str, bits, binSize);
str[binSize] = '\0';
cout << str << '\n';

}

The following main function creates two objects of type Binary and tests the
+ operator.

main ()
{

Binary n1 = "01011";
Binary n2 = "11010";
n1.Print();
n2.Print();
(n1 + n2).Print();
cout << n1 + Binary(5) << '\n'; // add and then convert to

int
cout << n1 - 5 << '\n'; // convert n2 to int and then

subtract
}

126 C++ Essentials Copyright © 2005 PragSoft

The last two lines of main behave completely differently. The first of these converts
5 to Binary, does the addition, and then converts the Binary result to int,
before sending it to cout. This is equivalent to:

cout << (int) Binary::operator+(n2,Binary(5)) << '\n';

The second converts n1 to int (because - is not defined for Binary), performs
the subtraction, and then send the result to cout. This is equivalent to:

cout << ((int) n2) - 5 << '\n';

In either case, the user-defined type conversion operator is applied implicitly.
The output produced by the program is evidence that the conversions are
performed correctly:

0000000000001011
0000000000011010
0000000000100101
16
6

¨

www.pragsoft.com Chapter 7: Overloading 127

Overloading << for Output

The simple and uniform treatment of output for built-in types is easily extended to
user-defined types by further overloading the << operator. For any given user-
defined type T, we can define an operator<< function which outputs objects of
type T:

ostream& operator << (ostream&, T&);

The first parameter must be a reference to ostream so that multiple uses of << can
be concatenated. The second parameter need not be a reference, but this is more
efficient for large objects.

For example, instead of the Binary class’s Print member function, we can
overload the << operator for the class. Because the first operand of << must be an
ostream object, it cannot be overloaded as a member function. It should therefore
be defined as a global function:

class Binary {
//...
friend ostream& operator << (ostream&, Binary&);

};

ostream& operator << (ostream &os, Binary &n)
{

char str[binSize + 1];
strncpy(str, n.bits, binSize);
str[binSize] = '\0';
cout << str;
return os;

}

Given this definition, << can be used for the output of binary numbers in a manner
identical to its use for the built-in types. For example,

Binary n1 = "01011", n2 = "11010";
cout << n1 << " + " << n1 << " = " << n1 + n2 << '\n';

will produce the following output:

0000000000001011 + 0000000000011010 = 0000000000100101

In addition to its simplicity and elegance, this style of output eliminates the
burden of remembering the name of the output function for each user-defined type.
Without the use of overloaded <<, the last example would have to be written as
(assuming that \n has been removed from Print):

Binary n1 = "01011", n2 = "11010";
n1.Print(); cout << " + "; n2.Print();
cout << " = "; (n1 + n2).Print(); cout << '\n'; ¨

128 C++ Essentials Copyright © 2005 PragSoft

Overloading >> for Input

Input of user-defined types is facilitated by overloading the >> operator, in a
manner similar to the way << is overloaded. For any given user-defined type T, we
can define an operator>> function which inputs objects of type T:

istream& operator >> (istream&, T&);

The first parameter must be a reference to istream so that multiple uses of >> can
be concatenated. The second parameter must be a reference, since it will be
modified by the function.

Continuing with the Binary class example, we overload the >> operator for
the input of bit streams. Again, because the first operand of >> must be an
istream object, it cannot be overloaded as a member function:

class Binary {
//...
friend istream& operator >> (istream&, Binary&);

};

istream& operator >> (istream &is, Binary &n)
{

char str[binSize + 1];
cin >> str;

 n = Binary(str); // use the constructor for simplicity
return is;

}

Given this definition, >> can be used for the input of binary numbers in a manner
identical to its use for the built-in types. For example,

Binary n;
cin >> n;

will read a binary number from the keyboard into to n.
¨

www.pragsoft.com Chapter 7: Overloading 129

Overloading []

Listing 7.27 defines a simple associative vector class. An associative vector is a
one-dimensional array in which elements can be looked up by their contents rather
than their position in the array. In AssocVec, each element has a string name (via
which it can be looked up) and an associated integer value.

Listing 7.27
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

#include <iostream.h>
#include <string.h>

class AssocVec {
public:

AssocVec (const int dim);
~AssocVec (void);

int& operator [] (const char *idx);
private:

struct VecElem {
char *index;
int value;

} *elems; // vector elements
int dim; // vector dimension
int used; // elements used so far

};

Annotation

5 The constructor creates an associative vector of the dimension specified by its
argument.

7 The overloaded [] operator is used for accessing vector elements. The
function which overloads [] must have exactly one parameter. Given a string
index, it searches the vector for a match. If a matching index is found then a
reference to its associated value is returned. Otherwise, a new element is
created and a reference to this value is returned.

12 The vector elements are represented by a dynamic array of VecElem
structures. Each vector element consists of a string (denoted by index) and an
integer value (denoted by value).

The implementation of the member functions is as follows:

AssocVec::AssocVec (const int dim)
{

AssocVec::dim = dim;
used = 0;
elems = new VecElem[dim];

}

AssocVec::~AssocVec (void)
{

130 C++ Essentials Copyright © 2005 PragSoft

for (register i = 0; i < used; ++i)
delete elems[i].index;

delete [] elems;
}

int& AssocVec::operator [] (const char *idx)
{

for (register i = 0; i < used; ++i) // search existing
elements

if (strcmp(idx,elems[i].index) == 0)
return elems[i].value;

if (used < dim && // create new element
 (elems[used].index = new char[strlen(idx)+1]) != 0) {

strcpy(elems[used].index,idx);
elems[used].value = used + 1;
return elems[used++].value;

}
static int dummy = 0;
return dummy;

}

Note that, because AssocVec::operator[] must return a valid reference, a
reference to a dummy static integer is returned when the vector is full or when new
fails.

A reference expression is an lvalue and hence can appear on both sides of an
assignment. If a function returns a reference then a call to that function can be
assigned to. This is why the return type of AssocVec::operator[] is defined to
be a reference.

Using AssocVec we can now create associative vectors that behave very
much like normal vectors:

AssocVec count(5);
count["apple"] = 5;
count["orange"] = 10;
count["fruit"] = count["apple"] + count["orange"];

This will set count["fruit"] to 15.
¨

www.pragsoft.com Chapter 7: Overloading 131

Overloading ()

Listing 7.28 defines a matrix class. A matrix is a table of values (very similar to a
two-dimensional array) whose size is denoted by the number of rows and columns
in the table. An example of a simple 2 x 3 matrix would be:

10 20 30
21 52 19

M =

The standard mathematical notation for referring to matrix elements uses brackets.
For example, element 20 of M (i.e., in the first row and second column) is referred
to as M(1,2). Matrix algebra provides a set of operations for manipulating matrices,
which includes addition, subtraction, and multiplication.

Listing 7.28
1

2
3
4
5
6
7
8
9

10

11
12
13
14
15

#include <iostream.h>

class Matrix {
public:

 Matrix (const short rows, const short cols);
 ~Matrix (void) {delete elems;}

double& operator () (const short row, const short col);
friend ostream& operator << (ostream&, Matrix&);
friend Matrix operator + (Matrix&, Matrix&);
friend Matrix operator - (Matrix&, Matrix&);
friend Matrix operator * (Matrix&, Matrix&);

private:
const short rows; // matrix rows
const short cols; // matrix columns
double *elems; // matrix elements

};

Annotation

4 The constructor creates a matrix of the size specified by its arguments, all of
whose elements are initialized to 0.

6 The overloaded () operator is used for accessing matrix elements. The
function which overloads () may have zero or more parameters. It returns a
reference to the specified element’s value.

7 The overloaded << is used for printing a matrix in tabular form.

8-10 These overloaded operators provide basic matrix operations.

14 The matrix elements are represented by a dynamic array of doubles.

132 C++ Essentials Copyright © 2005 PragSoft

The implementation of the first three member functions is as follows:

Matrix::Matrix (const short r, const short c) : rows(r), cols(c)
{

elems = new double[rows * cols];
}

double& Matrix::operator () (const short row, const short col)
{

static double dummy = 0.0;
return (row >= 1 && row <= rows && col >= 1 && col <= cols)

? elems[(row - 1)*cols + (col - 1)]
: dummy;

}

ostream& operator << (ostream &os, Matrix &m)
{

for (register r = 1; r <= m.rows; ++r) {
for (int c = 1; c <= m.cols; ++c)

os << m(r,c) << " ";
os << '\n';

}
return os;

}

As before, because Matrix::operator() must return a valid reference, a
reference to a dummy static double is returned when the specified element does
not exist. The following code fragment illustrates that matrix elements are lvalues:

Matrix m(2,3);
m(1,1) = 10; m(1,2) = 20; m(1,3) = 30;
m(2,1) = 15; m(2,2) = 25; m(2,3) = 35;
cout << m << '\n';

This will produce the following output:

10 20 30
15 25 35

¨

www.pragsoft.com Chapter 7: Overloading 133

Memberwise Initialization

Consider the following definition of the overloaded + operator for Matrix:

Matrix operator + (Matrix &p, Matrix &q)
{

Matrix m(p.rows, p.cols);
if (p.rows == q.rows && p.cols == q.cols)

for (register r = 1; r <= p.rows; ++r)
for (register c = 1; c <= p.cols; ++c)

m(r,c) = p(r,c) + q(r,c);
return m;

}

This function returns a matrix object which is initialized to m. The initialization is
handled by an internal constructor which the compiler automatically generates for
Matrix:

Matrix::Matrix (const Matrix &m) : rows(m.rows), cols(m.cols)
{

elems = m.elems;
}

This form of initialization is called memberwise initialization because the special
constructor initializes the object member by member. If the data members of the
object being initialized are themselves objects of another class, then those are also
memberwise initialized, etc.

As a result of the default memberwise initialization, the elems data member of
both objects will point to the same dynamically-allocated block. However, m is
destroyed upon the function returning. Hence the destructor deletes the block
pointed to by m.elems, leaving the returned object’s elems data member pointing
to an invalid block! This ultimately leads to a runtime failure (typically a bus error).
Figure 7.11 illustrates.

Figure 7.11 The danger of the default memberwise initialization of objects with
pointers.

rows
cols

elems

rows
cols

elems

Matrix m

Memberwise
 Copy of m Dynamic

Block rows
cols

elems

Memberwise
 Copy of m Invalid

Block

A memberwise copy of m is made After m is destroyed

Memberwise initialization occurs in the following situations:

134 C++ Essentials Copyright © 2005 PragSoft

• When defining and initializing an object in a declaration statement that uses
another object as its initializer, e.g., Matrix n = m in Foo below.

• When passing an object argument to a function (not applicable to a reference
or pointer argument), e.g., m in Foo below.

• When returning an object value from a function (not applicable to a reference
or pointer return value), e.g., return n in Foo below.

Matrix Foo (Matrix m) // memberwise copy argument to m
{

Matrix n = m; // memberwise copy m to n
//...
return n; // memberwise copy n and return copy

}

It should be obvious that default memberwise initialization is generally
adequate for classes which have no pointer data members (e.g., Point). The
problems caused by the default memberwise initialization of other classes can be
avoided by explicitly defining the constructor in charge of memberwise initialization.
For any given class X, the constructor always has the form:

X::X (const X&);

For example, for the Matrix class, this may be defined as follows:

class Matrix {
Matrix (const Matrix&);
//...

};

Matrix::Matrix (const Matrix &m) : rows(m.rows), cols(m.cols)
{

int n = rows * cols;
elems = new double[n]; // same size
for (register i = 0; i < n; ++i) // copy elements

elems[i] = m.elems[i];
}

¨

www.pragsoft.com Chapter 7: Overloading 135

Memberwise Assignment

Objects of the same class are assigned to one another by an internal overloading of
the = operator which is automatically generated by the compiler. For example, to
handle the assignment in

Matrix m(2,2), n(2,2);
//...
m = n;

the compiler automatically generates the following internal function:

Matrix& Matrix::operator = (const Matrix &m)
{

rows = m.rows;
cols = m.cols;
elems = m.elems;

}

This is identical in its approach to memberwise initialization and is called
memberwise assignment. It suffers from exactly the same problems, which in
turn can be overcome by explicitly overloading the = operator. For example, for
the Matrix class, the following overloading of = would be appropriate:

Matrix& Matrix::operator = (const Matrix &m)
{

if (rows == m.rows && cols == m.cols) { // must match
int n = rows * cols;
for (register i = 0; i < n; ++i) // copy elements

elems[i] = m.elems[i];
}
return *this;

}

In general, for any given class X, the = operator is overloaded by the following
member of X:

X& X::operator = (X&)

Operator = can only be overloaded as a member, and not globally.
¨

136 C++ Essentials Copyright © 2005 PragSoft

Overloading new and delete

Objects of different classes usually have different sizes and frequency of usage. As
a result, they impose different memory requirements. Small objects, in particular,
are not efficiently handled by the default versions of new and delete. Every block
allocated by new carries some overhead used for housekeeping purposes. For
large objects this is not significant, but for small objects the overhead may be even
bigger than the block itself. In addition, having too many small blocks can severely
slow down subsequent allocation and deallocation. The performance of a program
that dynamically creates many small objects can be significantly improved by using
a simpler memory management strategy for those objects.

The dynamic storage management operators new and delete can be
overloaded for a class, in which case they override the global definition of these
operators when used for objects of that class.

As an example, suppose we wish to overload new and delete for the Point
class, so that Point objects are allocated from an array:

#include <stddef.h>
#include <iostream.h>

const int maxPoints = 512;

class Point {
public:

//...
void* operator new (size_t bytes);
void operator delete (void *ptr, size_t bytes);

private:
int xVal, yVal;

static union Block {
int xy[2];
Block *next;

 } *blocks; // points to our freestore
static Block *freeList; // free-list of linked blocks
static int used; // blocks used so far

};

The type name size_t is defined in stddef.h. New should always return a
void*. The parameter of new denotes the size of the block to be allocated (in
bytes). The corresponding argument is always automatically passed by the
compiler. The first parameter of delete denotes the block to be deleted. The
second parameter is optional and denotes the size of the allocated block. The
corresponding arguments are automatically passed by the compiler.

Since blocks, freeList and used are static they do not affect the size of a
Point object (it is still two integers). These are initialized as follows:

Point::Block *Point::blocks = new Block[maxPoints];

www.pragsoft.com Chapter 7: Overloading 137

Point::Block *Point::freeList = 0;
int Point::used = 0;

New takes the next available block from blocks and returns its address.
Delete frees a block by inserting it in front of the linked-list denoted by
freeList. When used reaches maxPoints, new removes and returns the first
block in the linked-list, but fails (returns 0) when the linked-list is empty:

void* Point::operator new (size_t bytes)
{

Block *res = freeList;
return used < maxPoints

 ? &(blocks[used++])
 : (res == 0 ? 0

: (freeList = freeList->next, res));
}

void Point::operator delete (void *ptr, size_t bytes)
{

((Block*) ptr)->next = freeList;
freeList = (Block*) ptr;

}

Point::operator new and Point::operator delete are invoked only
for Point objects. Calling new with any other type as argument will invoke the
global definition of new, even if the call occurs inside a member function of Point.
For example:

Point *pt = new Point(1,1); // calls Point::operator new
char *str = new char[10]; // calls ::operator new
delete pt; // calls Point::operator delete
delete str; // calls ::operator delete

Even when new and delete are overloaded for a class, global new and delete
are used when creating and destroying object arrays:

Point *points = new Point[5]; // calls ::operator new
//...
delete [] points; // calls ::operator delete

The functions which overload new and delete for a class are always assumed
by the compiler to be static, which means that they will not have access to the this
pointer and therefore the nonstatic class members. This is because when these
operators are invoked for an object of the class, the object does not exist: new is
invoked before the object is constructed, and delete is called after it has been
destroyed.

¨

138 C++ Essentials Copyright © 2005 PragSoft

Overloading ->, *, and &

It is possible to divert the flow of control to a user-defined function before a pointer
to an object is dereferenced using -> or *, or before the address of an object is
obtained using &. This can be used to do some extra pointer processing, and is
facilitated by overloading unary operators ->, *, and &.

For classes that do not overload ->, this operator is always binary: the left
operand is a pointer to a class object and the right operand is a class member
name. When the left operand of -> is an object or reference of type X (but not
pointer), X is expected to have overloaded -> as unary. In this case, -> is first
applied to the left operand to produce a result p. If p is a pointer to a class Y then p
is used as the left operand of binary -> and the right operand is expected to be a
member of Y. Otherwise, p is used as the left operand of unary -> and the whole
procedure is repeated for class Y. Consider the following classes that overload ->:

class A {
//...
B& operator -> (void);

};

class B {
//...
Point* operator -> (void);

};

The effect of applying -> to an object of type A

A obj;
int i = obj->xVal;

is the successive application of overloaded -> in A and B:

int i = (B::operator->(A::operator->(obj)))->xVal;

In other words, A::operator-> is applied to obj to give p, B::operator-> is
applied to p to give q, and since q is a pointer to Point, the final result is q-
>xVal.

Unary operators * and & can also be overloaded so that the semantic
correspondence between ->, *, and & is preserved.

As an example, consider a library system which represents a book record as a
raw string of the following format:

"%Aauthor\0%Ttitle\0%Ppublisher\0%Ccity\0%Vvolume\0%Yyear\0\n"

www.pragsoft.com Chapter 7: Overloading 139

Each field starts with a field specifier (e.g., %A specifies an author) and ends with a
null character (i.e., \0). The fields can appear in any order. Also, some fields may
be missing from a record, in which case a default value must be used.

For efficiency reasons we may want to keep the data in this format but use the
following structure whenever we need to access the fields of a record:

struct Book {
char *raw; // raw format (kept for reference)
char *author;
char *title;
char *publisher;
char *city;
short vol;
short year;

};

The default field values are denoted by a global Book variable:

Book defBook = {
"raw", "Author?", "Title?", "Publisher?", "City?", 0, 0

};

We now define a class for representing raw records, and overload the unary
pointer operators to map a raw record to a Book structure whenever necessary.

#include <iostream.h>
#include <stdlib.h> // needed for atoi() below

int const cacheSize = 10;

class RawBook {
public:

RawBook (char *str) { data = str; }
Book* operator -> (void);
Book& operator * (void);
Book* operator & (void);

private:
Book* RawToBook (void);

char *data;
static Book *cache; // cache memory
static short curr; // current record in cache
static short used; // number of used cache records

};

To reduce the frequency of mappings from RawBook to Book, we have used a
simple cache memory of 10 records. The corresponding static members are
initialized as follows:

Book *RawBook::cache = new Book[cacheSize];
short RawBook::curr = 0;
short RawBook::used = 0;

140 C++ Essentials Copyright © 2005 PragSoft

The private member function RawToBook searches the cache for a RawBook
and returns a pointer to its corresponding Book structure. If the book is not in the
cache, RawToBook loads the book at the current position in the cache:

Book* RawBook::RawToBook (void)
{

char *str = data;
for (register i = 0; i < used; ++i) // search cache

if (data == cache[i].raw)
return cache + i;

curr = used < cacheSize ? used++ // update curr and used
 : (curr < 9 ? ++curr : 0);

Book *bk = cache + curr; // the book
*bk = defBook; // set default values
bk->raw = data;

for (;;) {
while (*str++ != '%') // skip to next specifier

;
switch (*str++) { // get a field

case 'A': bk->author = str; break;
case 'T': bk->title = str; break;
case 'P': bk->publisher = str; break;
case 'C': bk->city = str; break;
case 'V': bk->vol = atoi(str); break;
case 'Y': bk->year = atoi(str); break;

}
while (*str++ != '\0') // skip till end of field

;
if (*str == '\n') break; // end of record

}
return bk;

}

The overloaded operators ->, *, and & are easily defined in terms of
RawToBook:

Book* RawBook::operator -> (void) {return RawToBook(); }
Book& RawBook::operator * (void) {return *RawToBook();}
Book* RawBook::operator & (void) {return RawToBook(); }

The identical definitions for -> and & should not be surprising since -> is unary in
this context and semantically equivalent to &.

The following test case demonstrates that the operators behave as expected. It
sets up two book records and prints each using different operators.

main ()
{

RawBook r1("%AA. Peters\0%TBlue Earth\0%PPhedra\0%CSydney\0%
Y1981\0\n");

RawBook r2("%TPregnancy\0%AF. Jackson\0%Y1987\0%PMiles\0\n");
cout << r1->author << ", " << r1->title << ", "
 << r1->publisher << ", " << r1->city << ", "

www.pragsoft.com Chapter 7: Overloading 141

 << (*r1).vol << ", " << (*r1).year << '\n';

Book *bp = &r2; // note use of &
cout << bp->author << ", " << bp->title << ", "
 << bp->publisher << ", " << bp->city << ", "
 << bp->vol << ", " << bp->year << '\n';

}

It will produce the following output:

A. Peters, Blue Earth, Phedra, Sydney, 0, 1981
F. Jackson, Pregnancy, Miles, City?, 0, 1987

¨

142 C++ Essentials Copyright © 2005 PragSoft

Overloading ++ and --

The auto increment and auto decrement operators can be overloaded in both prefix
and postfix form. To distinguish between the two, the postfix version is specified to
take an extra integer argument. For example, the prefix and postfix versions of ++
may be overloaded for the Binary class as follows:

class Binary {
//...
friend Binary operator ++ (Binary&); // prefix
friend Binary operator ++ (Binary&, int); // postfix

};

Although we have chosen to define these as global friend functions, they can
also be defined as member functions. Both are easily defined in terms of the +
operator defined earlier:

Binary operator ++ (Binary &n) // prefix
{

return n = n + Binary(1);
}

Binary operator ++ (Binary &n, int) // postfix
{

Binary m = n;
n = n + Binary(1);
return m;

}

Note that we have simply ignored the extra parameter of the postfix version. When
this operator is used, the compiler automatically supplies a default argument for it.

The following code fragment exercises both versions of the operator:

Binary n1 = "01011";
Binary n2 = "11010";
cout << ++n1 << '\n';
cout << n2++ << '\n';
cout << n2 << '\n';

It will produce the following output:

0000000000001100
0000000000011010
0000000000011011

The prefix and postfix versions of -- may be overloaded in exactly the same
way.

¨

www.pragsoft.com Chapter 7: Overloading 143

Exercises

7.40 Write overloaded versions of a Max function which compares two integers, two
reals, or two strings, and returns the ‘larger’ one.

7.41 Overload the following two operators for the Set class:

• Operator - which gives the difference of two sets (e.g. s - t gives a set
consisting of those elements of s which are not in t).

• Operator <= which checks if a set is contained by another (e.g., s <= t is true if
all the elements of s are also in t).

7.42 Overload the following two operators for the Binary class:

• Operator - which gives the difference of two binary values. For simplicity,
assume that the first operand is always greater than the second operand.

• Operator [] which indexes a bit by its position and returns its value as a 0 or
1 integer.

7.43 Sparse matrices are used in a number of numerical methods (e.g., finite element
analysis). A sparse matrix is one which has the great majority of its elements set to
zero. In practice, sparse matrices of sizes up to 500 × 500 are not uncommon. On
a machine which uses a 64-bit representation for reals, storing such a matrix as an
array would require 2 megabytes of storage. A more economic representation
would record only nonzero elements together with their positions in the matrix.
Define a SparseMatrix class which uses a linked-list to record only nonzero
elements, and overload the +, -, and * operators for it. Also define an appropriate
memberwise initialization constructor and memberwise assignment operator for the
class.

7.44 Complete the implementation of the following String class. Note that two
versions of the constructor and = are required, one for initializing/assigning to a
String using a char*, and one for memberwise initialization/assignment. Operator
[] should index a string character using its position. Operator + should concatenate
two strings.

class String {
public:

String (const char*);
String (const String&);
String (const short);
~String (void);

String& operator = (const char*);
String& operator = (const String&);

144 C++ Essentials Copyright © 2005 PragSoft

char& operator [] (const short);
int Length (void) {return(len);}

friend String operator + (const String&, const String&);
friend ostream& operator <<(ostream&, String&);

private:
char *chars; // string characters
short len; // length of string

};

7.45 A bit vector is a vector with binary elements, that is, each element is either a 0 or a
1. Small bit vectors are conveniently represented by unsigned integers. For
example, an unsigned char can represent a bit vector of 8 elements. Larger bit
vectors can be defined as arrays of such smaller bit vectors. Complete the
implementation of the Bitvec class, as defined below. It should allow bit vectors
of any size to be created and manipulated using the associated operators.

enum Bool {false, true};
typedef unsigned char uchar;

class BitVec {
public:

 BitVec (const short dim);
 BitVec (const char* bits);
 BitVec (const BitVec&);
 ~BitVec (void) { delete vec; }

BitVec& operator = (const BitVec&);
BitVec& operator &= (const BitVec&);
BitVec& operator |= (const BitVec&);
BitVec& operator ^= (const BitVec&);
BitVec& operator <<= (const short);
BitVec& operator >>= (const short);
int operator [] (const short idx);
void Set (const short idx);
void Reset (const short idx);

BitVec operator ~ (void);
BitVec operator & (const BitVec&);
BitVec operator | (const BitVec&);
BitVec operator ^ (const BitVec&);
BitVec operator << (const short n);
BitVec operator >> (const short n);
Bool operator == (const BitVec&);
Bool operator != (const BitVec&);

friend ostream& operator << (ostream&, BitVec&);

private:
uchar *vec; // vector of 8*bytes bits
short bytes; // bytes in the vector

}; ¨

www.pragsoft.com Chapter 8: Derived Classes 145

8. Derived Classes

In practice, most classes are not entirely unique, but rather variations of existing
ones. Consider, for example, a class named RecFile which represents a file of
records, and another class named SortedRecFile which represents a sorted file
of records. These two classes would have much in common. For example, they
would have similar member functions such as Insert, Delete, and Find, as well
as similar data members. In fact, SortedRecFile would be a specialized version
of RecFile with the added property that its records are organized in sorted order.
Most of the member functions in both classes would therefore be identical, while a
few which depend on the fact that file is sorted would be different. For example,
Find would be different in SortedRecFile because it can take advantage of the
fact that the file is sorted to perform a binary search instead of the linear search
performed by the Find member of RecFile.

Given the shared properties of these two classes, it would be tedious to have
to define them independently. Clearly this would lead to considerable duplication of
code. The code would not only take longer to write it would also be harder to
maintain: a change to any of the shared properties would have to be consistently
applied to both classes.

Object-oriented programming provides a facility called inheritance to
address this problem. Under inheritance, a class can inherit the properties of an
existing class. Inheritance makes it possible to define a variation of a class without
redefining the new class from scratch. Shared properties are defined only once, and
reused as often as desired.

In C++, inheritance is supported by derived classes. A derived class is like
an ordinary class, except that its definition is based on one or more existing classes,
called base classes. A derived class can share selected properties (function as
well as data members) of its base classes, but makes no changes to the definition of
any of its base classes. A derived class can itself be the base class of another
derived class. The inheritance relationship between the classes of a program is
called a class hierarchy.

A derived class is also called a subclass, because it becomes a subordinate of
the base class in the hierarchy. Similarly, a base class may be called a superclass,
because from it many other classes may be derived.

146 C++ Essentials Copyright © 2005 PragSoft

An illustrative Class

We will define two classes for the purpose of illustrating a number of programming
concepts in later sections of this chapter. The two classes are defined in Listing
8.29 and support the creation of a directory of personal contacts.

Listing 8.29
1

 2

3
4
5
6
7
8
9

10
11

12
13
14
15
16

17
18
19
20
21
22
23
24
25

26
27

28
29
30
31

#include <iostream.h>
#include <string.h>

class Contact {
public:

Contact (const char *name,
 const char *address, const char *tel);

~Contact (void);
const char* Name (void) const {return name;}
const char* Address (void) const {return address;}
const char* Tel (void) const {return tel;}

friend ostream& operator << (ostream&, Contact&);

private:
char *name; // contact name
char *address; // contact address
char *tel; // contact telephone number

};

//---
class ContactDir {
public:

 ContactDir (const int maxSize);
 ~ContactDir(void);

void Insert (const Contact&);
void Delete (const char *name);
Contact* Find (const char *name);

friend ostream& operator <<(ostream&, ContactDir&);

private:
int Lookup (const char *name);

Contact **contacts; // list of contacts
int dirSize; // current directory size

 int maxSize; // max directory size
};

Annotation

3 Contact captures the details (i.e., name, address, and telephone number) of a
personal contact.

18 ContactDir allows us to insert into, delete from, and search a list of personal
contacts.

www.pragsoft.com Chapter 8: Derived Classes 147

22 Insert inserts a new contact into the directory. This will overwrite an existing
contact (if any) with identical name.

23 Delete deletes a contact (if any) whose name matches a given name.

24 Find returns a pointer to a contact (if any) whose name matches a given
name.

27 Lookup returns the slot index of a contact whose name matches a given name.
If none exists then Lookup returns the index of the slot where such an entry
should be inserted. Lookup is defined as private because it is an auxiliary
function used only by Insert, Delete, and Find.

The implementation of the member function and friends is as follows:

Contact::Contact (const char *name,
 const char *address, const char *tel)

{
Contact::name = new char[strlen(name) + 1];
Contact::address = new char[strlen(address) + 1];
Contact::tel = new char[strlen(tel) + 1];
strcpy(Contact::name, name);
strcpy(Contact::address, address);
strcpy(Contact::tel, tel);

}

Contact::~Contact (void)
{

delete name;
delete address;
delete tel;

}

ostream &operator << (ostream &os, Contact &c)
{

os << "(" << c.name << " , "
 << c.address << " , " << c.tel << ")";

 return os;
}

ContactDir::ContactDir (const int max)
{

typedef Contact *ContactPtr;
dirSize = 0;
maxSize = max;
contacts = new ContactPtr[maxSize];

};

ContactDir::~ContactDir (void)
{

for (register i = 0; i < dirSize; ++i)
delete contacts[i];

delete [] contacts;
}

148 C++ Essentials Copyright © 2005 PragSoft

void ContactDir::Insert (const Contact& c)
{

if (dirSize < maxSize) {
int idx = Lookup(c.Name());
if (idx > 0 &&

strcmp(c.Name(), contacts[idx]->Name()) == 0) {
 delete contacts[idx];

} else {
for (register i = dirSize; i > idx; --i) // shift right

contacts[i] = contacts[i-1];
++dirSize;

}
contacts[idx] = new Contact(c.Name(), c.Address(), c.Tel());

}
}

void ContactDir::Delete (const char *name)
{

int idx = Lookup(name);
if (idx < dirSize) {

delete contacts[idx];
--dirSize;
for (register i = idx; i < dirSize; ++i) // shift left

contacts[i] = contacts[i+1];
}

}

Contact *ContactDir::Find (const char *name)
{

int idx = Lookup(name);
return (idx < dirSize &&

strcmp(contacts[idx]->Name(), name) == 0)
? contacts[idx]
: 0;

}

int ContactDir::Lookup (const char *name)
{

for (register i = 0; i < dirSize; ++i)
if (strcmp(contacts[i]->Name(), name) == 0)

return i;
return dirSize;

}

ostream &operator << (ostream &os, ContactDir &c)
{

for (register i = 0; i < c.dirSize; ++i)
 os << *(c.contacts[i]) << '\n';
 return os;
}

The following main function exercises the ContactDir class by creating a
small directory and calling the member functions:

int main (void)

www.pragsoft.com Chapter 8: Derived Classes 149

{
ContactDir dir(10);
dir.Insert(Contact("Mary", "11 South Rd", "282 1324"));
dir.Insert(Contact("Peter", "9 Port Rd", "678 9862"));
dir.Insert(Contact("Jane", "321 Yara Ln", "982 6252"));
dir.Insert(Contact("Jack", "42 Wayne St", "663 2989"));
dir.Insert(Contact("Fred", "2 High St", "458 2324"));

cout << dir;
cout << "Find Jane: " << *dir.Find("Jane") << '\n';
dir.Delete("Jack");
cout << "Deleted Jack\n";
cout << dir;
return 0;

};

When run, it will produce the following output:

(Mary , 11 South Rd , 282 1324)
(Peter , 9 Port Rd , 678 9862)
(Jane , 321 Yara Ln , 982 6252)
(Jack , 42 Wayne St , 663 2989)
(Fred , 2 High St , 458 2324)
Find Jane: (Jane , 321 Yara Ln , 982 6252)
Deleted Jack
(Mary , 11 South Rd , 282 1324)
(Peter , 9 Port Rd , 678 9862)
(Jane , 321 Yara Ln , 982 6252)
(Fred , 2 High St , 458 2324)

¨

150 C++ Essentials Copyright © 2005 PragSoft

A Simple Derived Class

We would like to define a class called SmartDir which behaves the same as
ContactDir, but also keeps track of the most recently looked-up entry.
SmartDir is best defined as a derivation of ContactDir, as illustrated by Listing
8.30.

Listing 8.30
1

 2
3
4
5

6
7
8

class SmartDir : public ContactDir {
public:

 SmartDir(const int max) : ContactDir(max) {recent = 0;}
Contact* Recent (void);
Contact* Find (const char *name);

private:
char *recent; // the most recently looked-up name

};

Annotation

1 A derived class header includes the base classes from which it is derived. A
colon separates the two. Here, ContactDir is specified to be the base class
from which SmartDir is derived. The keyword public before ContactDir
specifies that ContactDir is used as a public base class.

3 SmartDir has its own constructor which in turn invokes the base class
constructor in its member initialization list.

4 Recent returns a pointer to the last looked-up contact (or 0 if there is none).

5 Find is redefined so that it can record the last looked-up entry.

7 This recent pointer is set to point to the name of the last looked-up entry.

The member functions are defined as follows:

Contact* SmartDir::Recent (void)
{

return recent == 0 ? 0 : ContactDir::Find(recent);
}

Contact* SmartDir::Find (const char *name)
{

Contact *c = ContactDir::Find(name);
if (c != 0)

recent = (char*) c->Name();
 return c;
}

Because ContactDir is a public base class of SmartDir, all the public
members of ContactDir become public members of SmartDir. This means that
we can invoke a member function such as Insert on a SmartDir object and this

www.pragsoft.com Chapter 8: Derived Classes 151

will simply be a call to ContactDir::Insert. Similarly, all the private members
of ContactDir become private members of SmartDir.

In accordance with the principles of information hiding, the private members of
ContactDir will not be accessible by SmartDir. Therefore, SmartDir will be
unable to access any of the data members of ContactDir as well as the private
member function Lookup.

SmartDir redefines the Find member function. This should not be confused
with overloading. There are two distinct definitions of this function:
ContactDir::Find and SmartDir::Find (both of which have the same
signature, though they can have different signatures if desired). Invoking Find on a
SmartDir object causes the latter to be invoked. As illustrated by the definition of
Find in SmartDir, the former can still be invoked using its full name.

The following code fragment illustrates that SmartDir behaves the same as
ContactDir, but also keeps track of the most recently looked-up entry:

SmartDir dir(10);
dir.Insert(Contact("Mary", "11 South Rd", "282 1324"));
dir.Insert(Contact("Peter", "9 Port Rd", "678 9862"));
dir.Insert(Contact("Jane", "321 Yara Ln", "982 6252"));
dir.Insert(Contact("Fred", "2 High St", "458 2324"));
dir.Find("Jane");
dir.Find("Peter");
cout << "Recent: " << *dir.Recent() << '\n';

This will produce the following output:

Recent: (Peter , 9 Port Rd , 678 9862)

An object of type SmartDir contains all the data members of ContactDir as
well as any additional data members introduced by SmartDir. Figure 8.12
illustrates the physical make up of a ContactDir and a SmartDir object.

Figure 8.12 Base and derived class objects.

contacts

dirSize

maxSize

contacts

dirSize

maxSize

recent

ContactDir object SmartDir object

¨

152 C++ Essentials Copyright © 2005 PragSoft

Class Hierarchy Notation

A class hierarchy is usually illustrated using a simple graph notation. Figure 8.13
illustrates the UML notation that we will be using in this book. Each class is
represented by a box which is labeled with the class name. Inheritance between
two classes is illustrated by a directed line drawn from the derived class to the base
class. A line with a diamond shape at one end depicts composition (i.e., a class
object is composed of one or more objects of another class). The number of
objects contained by another object is depicted by a label (e.g., n).

Figure 8.13 A simple class hierarchy

ContactDir

SmartDir

Contactn

Figure 8.13 is interpreted as follows. Contact, ContactDir, and SmartDir
are all classes. A ContactDir is composed of zero or more Contact objects.
SmartDir is derived from ContactDir.

¨

www.pragsoft.com Chapter 8: Derived Classes 153

Constructors and Destructors

A derived class may have constructors and a destructor. Since a derived class may
provide data members on top of those of its base class, the role of the constructor
and destructor is to, respectively, initialize and destroy these additional members.

When an object of a derived class is created, the base class constructor is
applied to it first, followed by the derived class constructor. When the object is
destroyed, the destructor of the derived class is applied first, followed by the base
class destructor. In other words, constructors are applied in order of derivation and
destructors are applied in the reverse order. For example, consider a class C
derived from B which is in turn derived from A. Figure 8.14 illustrates how an
object c of type C is created and destroyed.

class A { /* ... */ }
class B : public A { /* ... */ }
class C : public B { /* ... */ }

Figure 8.14 Derived class object construction and destruction order.

A::A

B::B

C::C

A::~A

B::~B

C::~C.........

c being constructed c being destroyed

The constructor of a derived class whose base class constructor requires
arguments should specify these in the definition of its constructor. To do this, the
derived class constructor explicitly invokes the base class constructor in its member
initialization list. For example, the SmartDir constructor passes its argument to the
ContactDir constructor in this way:

SmartDir::SmartDir (const int max) : ContactDir(max)
{ /* ... */ }

In general, all that a derived class constructor requires is an object from the base
class. In some situations, this may not even require referring to the base class
constructor:

extern ContactDir cd; // defined elsewhere
SmartDir::SmartDir (const int max) : cd
{ /* ... */ } ¨

154 C++ Essentials Copyright © 2005 PragSoft

Protected Class Members

Although the private members of a base class are inherited by a derived class, they
are not accessible to it. For example, SmartDir inherits all the private (and public)
members of ContactDir, but is not allowed to directly refer to the private
members of ContactDir. The idea is that private members should be completely
hidden so that they cannot be tampered with by the class clients.

This restriction may prove too prohibitive for classes from which other classes
are likely to be derived. Denying the derived class access to the base class private
members may convolute its implementation or even make it impractical to define.

The restriction can be relaxed by defining the base class private members as
protected instead. As far as the clients of a class are concerned, a protected
member is the same as a private member: it cannot be accessed by the class clients.
However, a protected base class member can be accessed by any class derived
from it.

For example, the private members of ContactDir can be made protected by
substituting the keyword protected for private:

class ContactDir {
//...

protected:
int Lookup (const char *name);
Contact **contacts; // list of contacts
int dirSize; // current directory size

 int maxSize; // max directory size
};

As a result, Lookup and the data members of ContactDir are now accessible to
SmartDir.

The access keywords private, public, and protected can occur as many
times as desired in a class definition. Each access keyword specifies the access
characteristics of the members following it until the next access keyword:

class Foo {
public:

// public members...
private:

// private members...
protected:

// protected members...
public:

// more public members...
protected:

// more protected members...
}; ¨

www.pragsoft.com Chapter 8: Derived Classes 155

Private, Public, and Protected Base Classes

A base class may be specified to be private, public, or protected. Unless so
specified, the base class is assumed to be private:

class A {
private: int x; void Fx (void);
public: int y; void Fy (void);
protected: int z; void Fz (void);

};
class B : A {}; // A is a private base class of B
class C : private A {}; // A is a private base class of C
class D : public A {}; // A is a public base class of D
class E : protected A {}; // A is a protected base class of E

The behavior of these is as follows (see Table 8.13 for a summary):

• All the members of a private base class become private members of the
derived class. So x, Fx, y, Fy, z, and Fz all become private members of B and
C.

• The members of a public base class keep their access characteristics in the
derived class. So, x and Fx becomes private members of D, y and Fy become
public members of D, and z and Fz become protected members of D.

• The private members of a protected base class become private members of
the derived class. Whereas, the public and protected members of a protected
base class become protected members of the derived class. So, x and Fx
become private members of E, and y, Fy, z, and Fz become protected
members of E.

Table 8.13 Base class access inheritance rules.

Base Class Private Derived Public Derived Protected Derived
Private Member private private private
Public Member private public protected
Protected Member private protected protected

It is also possible to individually exempt a base class member from the access
changes specified by a derived class, so that it retains its original access
characteristics. To do this, the exempted member is fully named in the derived class
under its original access characteristic. For example:

class C : private A {
//...

public: A::Fy; // makes Fy a public member of C
protected: A::z; // makes z a protected member of C
}; ¨

156 C++ Essentials Copyright © 2005 PragSoft

Virtual Functions

Consider another variation of the ContactDir class, called SortedDir, which
ensures that new contacts are inserted in such a manner that the list remains sorted
at all times. The obvious advantage of this is that the search speed can be improved
by using the binary search algorithm instead of linear search.

The actual search is performed by the Lookup member function. Therefore we
need to redefine this function in SortedDir so that it uses the binary search
algorithm. However, all the other member functions refer to
ContactDir::Lookup. We can also redefine these so that they refer to
SortedDir::Lookup instead. If we follow this approach, the value of inheritance
becomes rather questionable, because we would have practically redefined the
whole class.

What we really want to do is to find a way of expressing this: Lookup should
be tied to the type of the object which invokes it. If the object is of type
SortedDir then invoking Lookup (from anywhere, even from within the member
functions of ContactDir) should mean SortedDir::Lookup. Similarly, if the
object is of type ContactDir then calling Lookup (from anywhere) should mean
ContactDir::Lookup.

This can be achieved through the dynamic binding of Lookup: the decision as
to which version of Lookup to call is made at runtime depending on the type of the
object.

In C++, dynamic binding is supported by virtual member functions. A member
function is declared as virtual by inserting the keyword virtual before its
prototype in the base class. Any member function, including constructors and
destructors, can be declared as virtual. Lookup should be declared as virtual in
ContactDir:

class ContactDir {
//...

protected:
virtual int Lookup (const char *name);
//...

};

Only nonstatic member functions can be declared as virtual. A virtual function
redefined in a derived class must have exactly the same prototype as the one in the
base class. Virtual functions can be overloaded like other member functions.

Listing 8.31 shows the definition of SortedDir as a derived class of
ContactDir.

Listing 8.31

www.pragsoft.com Chapter 8: Derived Classes 157

1
 2
3
4
5
6

class SortedDir : public ContactDir {
public:

SortedDir (const int max) : ContactDir(max) {}
protected:

virtual int Lookup (const char *name);
};

Annotation

3 The constructor simply invokes the base class constructor.

5 Lookup is again declared as virtual to enable any class derived from
SortedDir to redefine it.

The new definition of Lookup is as follows:

int SortedDir::Lookup (const char *name)
{

int bot = 0;
int top = dirSize - 1;
int pos = 0;
int mid, cmp;

while (bot <= top) {
mid = (bot + top) / 2;
if ((cmp = strcmp(name, contacts[mid]->Name())) == 0)

return mid; // return item index
else if (cmp < 0)

pos = top = mid - 1; // restrict search to lower half
else

pos = bot = mid + 1; // restrict search to upper half
}
return pos < 0 ? 0 : pos; // expected slot

}

The following code fragment illustrates that SortedDir::Lookup is called by
ContactDir::Insert when invoked via a SortedDir object:

SortedDir dir(10);
dir.Insert(Contact("Mary", "11 South Rd", "282 1324"));
dir.Insert(Contact("Peter", "9 Port Rd", "678 9862"));
dir.Insert(Contact("Jane", "321 Yara Ln", "982 6252"));
dir.Insert(Contact("Jack", "42 Wayne St", "663 2989"));
dir.Insert(Contact("Fred", "2 High St", "458 2324"));
cout << dir;

It will produce the following output:

(Fred , 2 High St , 458 2324)
(Jack , 42 Wayne St , 663 2989)
(Jane , 321 Yara Ln , 982 6252)
(Mary , 11 South Rd , 282 1324)
(Peter , 9 Port Rd , 678 9862) ¨

158 C++ Essentials Copyright © 2005 PragSoft

Multiple Inheritance

The derived classes encountered so far in this chapter represent single
inheritance, because each inherits its attributes from a single base class.
Alternatively, a derived class may have multiple base classes. This is referred to as
multiple inheritance.

For example, suppose we have defined two classes for, respectively,
representing lists of options and bitmapped windows:

class OptionList {
public:

OptionList (int n);
~OptionList (void);
//...

};

class Window {
public:

Window (Rect &bounds);
~Window (void);

 //...
};

A menu is a list of options displayed within its own window. It therefore makes
sense to define Menu by deriving it from OptionList and Window:

class Menu : public OptionList, public Window {
public:

Menu (int n, Rect &bounds);
 ~Menu (void);

//...
};

Under multiple inheritance, a derived class inherits all of the members of its
base classes. As before, each of the base classes may be private, public, or
protected. The same base member access principles apply. Figure 8.15 illustrates
the class hierarchy for Menu.

Figure 8.15 The Menu class hierarchy

OptionList Window

Menu

Since the base classes of Menu have constructors that take arguments, the
constructor for the derived class should invoke these in its member initialization list:

www.pragsoft.com Chapter 8: Derived Classes 159

Menu::Menu (int n, Rect &bounds) : OptionList(n), Window(bounds)
{

//...
}

The order in which the base class constructors are invoked is the same as the order
in which they are specified in the derived class header (not the order in which they
appear in the derived class constructor’s member initialization list). For Menu, for
example, the constructor for OptionList is invoked before the constructor for
Window, even if we change their order in the constructor:

Menu::Menu (int n, Rect &bounds) : Window(bounds), OptionList(n)
{

//...
}

The destructors are applied in the reverse order: ~Menu, followed by ~Window,
followed by ~OptionList.

The obvious implementation of a derived class object is to contain one object
from each of its base classes. Figure 8.16 illustrates the relationship between a
Menu object and its base class objects.

Figure 8.16 Base and derived class objects.
OptionList object

OptionList
data members

Window object

Window
data members

Menu object

OptionList
data members

Window
data members

Menu
data members

In general, a derived class may have any number of base classes, all of which
must be distinct:

class X : A, B, A { // illegal: A appears twice
//...

};

¨

160 C++ Essentials Copyright © 2005 PragSoft

Ambiguity

Multiple inheritance further complicates the rules for referring to the members of a
class. For example, suppose that both OptionList and Window have a member
function called Highlight for highlighting a specific part of either object type:

class OptionList {
public:

//...
void Highlight (int part);

};

class Window {
public:

//...
void Highlight (int part);

};

The derived class Menu will inherit both these functions. As a result, the call

m.Highlight(0);

(where m is a Menu object) is ambiguous and will not compile, because it is not
clear whether it refers to OptionList::Highlight or Window::Highlight.
The ambiguity is resolved by making the call explicit:

m.Window::Highlight(0);

Alternatively, we can define a Highlight member for Menu which in turn calls the
Highlight members of the base classes:

class Menu : public OptionList, public Window {
public:

//...
void Highlight (int part);

};

void Menu::Highlight (int part)
{

OptionList::Highlight(part);
Window::Highlight(part);

}
¨

www.pragsoft.com Chapter 8: Derived Classes 161

Type Conversion

For any derived class there is an implicit type conversion from the derived class to
any of its public base classes. This can be used for converting a derived class
object to a base class object, be it a proper object, a reference, or a pointer:

Menu menu(n, bounds);
Window win = menu;
Window &wRef = menu;
Window *wPtr = &menu;

Such conversions are safe because the derived class object always contains all of
its base class objects. The first assignment, for example, causes the Window
component of menu to be assigned to win.

By contrast, there is no implicit conversion from a base class to a derived
class. The reason being that such a conversion is potentially dangerous due to the
fact that the derived class object may have data members not present in the base
class object. The extra data members will therefore end up with unpredictable
values. All such conversions must be explicitly cast to confirm the programmer’s
intention:

Menu &mRef = (Menu&) win; // caution!
Menu *mPtr = (Menu*) &win; // caution!

A base class object cannot be assigned to a derived class object unless there is a
type conversion constructor in the derived class defined for this purpose. For
example, given

class Menu : public OptionList, public Window {
public:

//...
Menu (Window&);

};

the following would be valid and would use the constructor to convert win to a
Menu object before assigning:

menu = win; // invokes Menu::Menu(Window&)

¨

162 C++ Essentials Copyright © 2005 PragSoft

Inheritance and Class Object Members

Consider the problem of recording the average time required for a message to be
transmitted from one machine to another in a long-haul network. This can be
represented as a table, as illustrated by Table 8.14.

Table 8.14 Message transmission time (in seconds).

Sydney Melbourne Perth
Sydney 0.00 3.55 12.45
Melbourne 2.34 0.00 10.31
Perth 15.36 9.32 0.00

The row and column indices for this table are strings rather than integers, so
the Matrix class (Chapter 7) will not be adequate for representing the table. We
need a way of mapping strings to indices. This is already supported by the
AssocVec class (Chapter 7). As shown in Listing 8.32, Table1 can be defined as
a derived class of Matrix and AssocVec.

Listing 8.32
1

 2
3
4
5
6
7

8
9

10
11
12
13
14

class Table1 : Matrix, AssocVec {
public:

Table1 (const short entries)
: Matrix(entries, entries),

 AssocVec(entries) {}
double& operator () (const char *src, const char *dest);

};

double& Table1::operator () (const char *src, const char *dest)
{

return this->Matrix::operator()(
this->AssocVec::operator[](src),
this->AssocVec::operator[](dest)

);
}

Here is a simple test of the class

Table tab(3);
tab("Sydney","Perth") = 12.45;
cout << "Sydney -> Perth = " << tab("Sydney","Perth") << '\n';

which produces the following output:

Sydney -> Perth = 12.45

Another way of defining this class is to derive it from Matrix and include an
AssocVec object as a data member (see Listing 8.33).

Listing 8.33

www.pragsoft.com Chapter 8: Derived Classes 163

1
 2
3
4
5
6
7
8
9

10
11
12
13

class Table2 : Matrix {
public:

Table2 (const short entries)
: Matrix(entries, entries),

 index(entries) {}
double& operator () (const char *src, const char *dest);

private:
AssocVec index; // row and column index

};

double& Table2::operator () (const char *src, const char *dest)
{

return this->Matrix::operator()(index[src], index[dest]);
}

The inevitable question is: which one is a better solution, Table1 or Table2?
The answer lies in the relationship of table to matrix and associative vector:

• A table is a form of matrix.

• A table is not an associative vector, but rather uses an associative vector to
manage the association of its row and column labels with positional indexes.

In general, an is-a relationship is best realized using inheritance, because it implies
that the properties of one object are shared by another object. On the other hand,
a uses-a (or has-a) relationship is best realized using composition, because it
implies that one object is contained by another object. Table2 is therefore the
preferred solution.

It is worth considering which of the two versions of table better lends itself to
generalization. One obvious generalization is to remove the restriction that the table
should be square, and to allow the rows and columns to have different labels. To
do this, we need to provide two sets of indexes: one for rows and one for columns.
Hence we need two associative vectors. It is arguably easier to expand Table2 to
do this rather than modify Table1 (see Listing 8.34).

Figure 8.17 shows the class hierarchies for the three variations of table.

Figure 8.17 Variations of table.

Table1

AssocVecMatrix

Table2 AssocVec

Matrix

1
Table3 AssocVec

Matrix

2

Listing 8.34

164 C++ Essentials Copyright © 2005 PragSoft

1
 2
3
4
5
6
7

8
9

10
11

12
13
14
15

class Table3 : Matrix {
public:

Table3 (const short rows, const short cols)
: Matrix(rows,cols),
 rowIdx(rows),
 colIdx(cols) {}

double& operator () (const char *src, const char *dest);

private:
AssocVec rowIdx; // row index
AssocVec colIdx; // column index

};

double& Table3::operator () (const char *src, const char *dest)
{

return this->Matrix::operator()(rowIdx[src], colIdx[dest]);
}

For a derived class which also has class object data members, the order of
object construction is as follows. First the base class constructors are invoked in
the order in which they appear in the derived class header. Then the class object
data members are initialized by their constructors being invoked in the same order
in which they are declared in the class. Finally, the derived class constructor is
invoked. As before, the derived class object is destroyed in the reverse order of
construction.

Figure 8.18 illustrates this for a Table3 object.

Figure 8.18 Table3 object construction and destruction order.

Matrix::Matrix

rowIdx.AssocVec::AssocVec

colIdx.AssocVec::AssocVec

....

table being constructed

Table3::Table3

Matrix::~Matrix

rowIdx.AssocVec::~AssocVec

colIdx.AssocVec::~AssocVec

table being destroyed

Table3::~Table3

¨

www.pragsoft.com Chapter 8: Derived Classes 165

Virtual Base Classes

Recall the Menu class and suppose that its two base classes are also multiply
derived:

class OptionList : public Widget, List { /*...*/ };
class Window : public Widget, Port { /*...*/ };
class Menu : public OptionList, public Window { /*...*/ };

Since Widget is a base class for both OptionList and Window, each menu
object will have two widget objects (see Figure 8.19a). This is not desirable
(because a menu is considered a single widget) and may lead to ambiguity. For
example, when applying a widget member function to a menu object, it is not clear
as to which of the two widget objects it should be applied. The problem is
overcome by making Widget a virtual base class of OptionList and Window. A
base class is made virtual by placing the keyword virtual before its name in the
derived class header:

class OptionList : virtual public Widget, List { /*...*/ };
class Window : virtual public Widget, Port { /*...*/ };

This ensures that a Menu object will contain exactly one Widget object. In other
words, OptionList and Window will share the same Widget object.

An object of a class which is derived from a virtual base class does not
directly contain the latter’s object, but rather a pointer to it (see Figure 8.19b and
8.19c). This enables multiple occurrences of a virtual class in a hierarchy to be
collapsed into one (see Figure 8.19d).

If in a class hierarchy some instances of a base class X are declared as virtual
and other instances as nonvirtual, then the derived class object will contain an X
object for each nonvirtual instance of X, and a single X object for all virtual
occurrences of X.

A virtual base class object is initialized, not necessarily by its immediate
derived class, but by the derived class farthest down the class hierarchy. This rule
ensures that the virtual base class object is initialized only once. For example, in a
menu object, the widget object is initialized by the Menu constructor (which
overrides the invocation of the Widget constructor by OptionList or Window):

Menu::Menu (int n, Rect &bounds) : Widget(bounds),
OptionList(n),
Window(bounds)

{ //... }

Regardless of where it appears in a class hierarchy, a virtual base class object is
always constructed before nonvirtual objects in the same hierarchy.

Figure 8.19 Nonvirtual and virtual base classes.

166 C++ Essentials Copyright © 2005 PragSoft

(a) Menu object

Widget data members

List data members

OptionList data members

Widget data members

Port data members

Window data members

Menu data members

(b) OptionList object with Widget as virtual

Widget data members
List data members

OptionList data members

Widget data members
Port data members

Window data members

(c) Window object with Widget as virtual

Menu data members

(d) Menu object with Widget as virtual

Widget data members
List data members

OptionList data members

Port data members

Window data members

If in a class hierarchy a virtual base is declared with conflicting access
characteristics (i.e., any combination of private, protected, and public), then the
most accessible will dominate. For example, if Widget were declared a private
base class of OptionList, and a public base class of Window, then it would still
be a public base class of Menu.

¨

www.pragsoft.com Chapter 8: Derived Classes 167

Overloaded Operators

Except for the assignment operator, a derived class inherits all the overloaded
operators of its base classes. An operator overloaded by the derived class itself
hides the overloading of the same operator by the base classes (in exactly the same
way member functions of a derived class hide member functions of base classes).

Memberwise initialization and assignment (see Chapter 7) extend to derived
classes. For any given class Y derived from X, memberwise initialization is handled
by an automatically-generated (or user-defined) constructor of the form:

Y::Y (const Y&);

Similarly, memberwise assignment is handled by an automatically-generated (or
user-defined) overloading of the = operator:

Y& Y::operator = (Y&)

Memberwise initialization (or assignment) of a derived class object involves the
memberwise initialization (or assignment) of its base classes as well as its class
object members.

Special care is needed when a derived class relies on the overloading of new
and delete operators for its base class. For example, recall the overloading of
these two operators for the Point class in Chapter 7, and suppose that we wish to
use them for a derived class:

class Point3D : public Point {
public:

//...
private:

int depth;
};

Because the implementation of Point::operator new assumes that the
requested block should be the size of a Point object, its inheritance by the
Point3D class leads to a problem: it fails to account for the extra space needed by
the data member of the latter (i.e., depth).

To avoid this problem, an overloading of new should attempt to allocate the
exact amount of storage specified by its size parameter, rather than assuming a
predefined size. Similarly, an overloading of delete should note the size specified
by its second parameter and attempt to release exactly those many bytes.

¨

168 C++ Essentials Copyright © 2005 PragSoft

Exercises

8.46 Consider a Year class which divides the days in a year into work days and off
days. Because each day has a binary value, Year is easily derived from BitVec:

enum Month {
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

};

class Year : public BitVec {
public:

Year (const short year);
void WorkDay (const short day); // set day as work day
void OffDay (const short day); // set day as off day
Bool Working (const short day); // true if a work day
short Day (const short day, // convert date to day

 const Month month, const short year);
protected:

short year; // calendar year
};

Days are sequentially numbered from the beginning of the year, starting at 1 for
January 1st. Complete the Year class by implementing its member functions.

8.47 Consider an educational application program which given an arbitrary set of values,
X = [x1, x2, ...,xn], generates a set of n linear equations whose solution is X, and
then proceeds to illustrate this by solving the equations using Gaussian elimination.
Derive a class named LinearEqns from Matrix and for this purpose and define
the following member functions for it:

• A constructor which accepts X as a matrix, and a destructor.

• Generate which randomly generates a system of linear equations as a matrix
M. It should take a positive integer (coef) as argument and generate a set of
equations, ensuring that the range of the coefficients does not exceed coef.
Use a random number generator (e.g., random under UNIX) to generate the
coefficients. To ensure that X is a solution for the equations denoted by M, the
last element of a row k is denoted by:

M k n M k i X i
i

n

, ,+ = ×
=
∑1

1

• Solve which uses Gaussian elimination to solve the equations generated by
Generate. Solve should the output operator of Matrix to display the
augmented matrix each time the elements below a pivot are eliminated.

8.48 Enumerations introduced by an enum declaration are small subsets of integers. In
certain applications we may need to construct sets of such enumerations. For

www.pragsoft.com Chapter 8: Derived Classes 169

example, in a parser, each parsing routine may be passed a set of symbols that
should not be skipped when the parser attempts to recover from a syntax error.
These symbols are typically the reserved words of the language:

enum Reserved {classSym, privateSym, publicSym, protectedSym,
 friendSym, ifSym, elseSym, switchSym,...};

Given that there may be at most n elements in a set (n being a small number) the set
can be efficiently represented as a bit vector of n elements. Derive a class named
EnumSet from BitVec to facilitate this. EnumSet should overload the following
operators:

• Operator + for set union.

• Operator - for set difference.

• Operator * for set intersection.

• Operator % for set membership.

• Operators <= and >= for testing if a set is a subset of another.

• Operators >> and << for, respectively, adding an element to and removing an
element from a set.

8.49 An abstract class is a class which is never used directly but provides a skeleton
for other classes to be derived from it. Typically, all the member functions of an
abstract are virtual and have dummy implementations. The following is a simple
example of an abstract class:

class Database {
public:

virtual void Insert (Key, Data) {}
virtual void Delete (Key) {}
virtual Data Search (Key) {return 0;}

};

It provides a skeleton for a database-like classes. Examples of the kind of classes
which could be derived from database include: linked-list, binary tree, and B-tree.
First derive a B-tree class from Database and then derive a B*-tree from B-tree:

class BTree : public Database { /*...*/ };
class BStar : public BTree { /*...*/ };

See Comer (1979) for a description of B-tree and B*-tree. For the purpose of this
exercise, use the built-in type int for Key and double for Data.

¨

170 C++ Essentials Copyright © 2005 PragSoft

9. Templates

This chapter describes the template facility of C++ for defining functions and
classes. Templates facilitate the generic definition of functions and classes so that
they are not tied to specific implementation types. They are invaluable in that they
dispense with the burden of redefining a function or class so that it will work with
yet another data type.

A function template defines an algorithm. An algorithm is a generic recipe for
accomplishing a task, independent of the particular data types used for its
implementation. For example, the binary search algorithm operates on a sorted
array of items, whose exact type is irrelevant to the algorithm. Binary search can
therefore be defined as a function template with a type parameter which denotes
the type of the array items. This template then becomes a blueprint for generating
executable functions by substituting a concrete type for the type parameter. This
process is called instantiation and its outcome is a conventional function.

A class template defines a parameterized type . A parameterized type is a
data type defined in terms of other data types, one or more of which are
unspecified. Most data types can be defined independently of the concrete data
types used in their implementation. For example, the stack data type involves a set
of items whose exact type is irrelevant to the concept of stack. Stack can therefore
be defined as a class template with a type parameter which specifies the type of the
items to be stored on the stack. This template can then be instantiated, by
substituting a concrete type for the type parameter, to generate executable stack
classes.

Templates provide direct support for writing reusable code. This in turn makes
them an ideal tool for defining generic libraries.
 We will present a few simple examples to illustrate how templates are defined,
instantiated, and specialized. We will describe the use of nontype parameters in
class templates, and discuss the role of class members, friends, and derivations in
the context of class templates.

www.pragsoft.com Chapter 9: Templates 171

Function Template Definition

A function template definition (or declaration) is always preceded by a template
clause, which consists of the keyword template and a list of one or more type
parameters. For example,

template <class T> T Max (T, T);

declares a function template named Max for returning the maximum of two objects.
T denotes an unspecified (generic) type. Max is specified to compare two objects
of the same type and return the larger of the two. Both arguments and the return
value are therefore of the same type T. The definition of a function template is very
similar to a normal function, except that the specified type parameters can be
referred to within the definition. The definition of Max is shown in Listing 9.35.

Listing 9.35
1

 2
3
4
5

template <class T>
T Max (T val1, T val2)
{

return val1 > val2 ? val1 : val2;
}

A type parameter is an arbitrary identifier whose scope is limited to the
function itself. Type parameters always appear inside <>. Each type parameter
consists of the keyword class followed by the parameter name. When multiple
type parameters are used, they should be separated by commas. Each specified
type parameter must actually be referred to in the function prototype. The keyword
class cannot be factored out:

template <class T1, class T2, class T3>
T3 Relation(T1, T2); // ok

template <class T1, class T2>
int Compare (T1, T1); // illegal! T2 not used.

template <class T1, T2> // illegal! class missing for T2
int Compare (T1, T2);

For static, inline, and extern functions, the respective keyword must appear after
the template clause, and not before it:

template <class T>
inline T Max (T val1, T val2); // ok

inline template <class T> // illegal! inline misplaced
T Max (T val1, T val2);

¨

172 C++ Essentials Copyright © 2005 PragSoft

Function Template Instantiation

A function template represents an algorithm from which executable implementations
of the function can be generated by binding its type parameters to concrete (built-in
or user-defined) types. For example, given the earlier template definition of Max,
the code fragment

cout << Max(19, 5) << ' '
 << Max(10.5, 20.3) << ' '
 << Max('a','b') << '\n';

will produce the following output:

19 20.3 b

In the first call to Max, both arguments are integers, hence T is bound to int.
In the second call, both arguments are reals, hence T is bound to double. In the
final call, both arguments are characters, hence T is bound to char. A total of three
functions are therefore generated by the compiler to handle these cases:

int Max (int, int);
double Max (double, double);
char Max (char, char);

When the compiler encounters a call to a template function, it attempts to infer
the concrete type to be substituted for each type parameter by examining the type
of the arguments in the call. The compiler does not attempt any implicit type
conversions to ensure a match. As a result, it cannot resolve the binding of the
same type parameter to reasonable but unidentical types. For example:

Max(10, 12.6);

would be considered an error because it requires the first argument to be converted
to double so that both arguments can match T. The same restriction even applies
to the ordinary parameters of a function template. For example, consider the
alternative definition of Max in Listing 9.36 for finding the maximum value in an
array of values. The ordinary parameter n denotes the number of array elements. A
matching argument for this parameter must be of type int:

unsigned nValues = 4;
double values[] = {10.3, 19.5, 20.6, 3.5};
Max(values, 4); // ok
Max(values, nValues); // illegal! nValues does not match int

Listing 9.36

www.pragsoft.com Chapter 9: Templates 173

1
 2
3
4
5
6
7
8
9

template <class T>
T Max (T *vals, int n)
{

T max = vals[0];
for (register i = 1; i < n; ++i)

if (vals[i] > max)
max = vals[i];

return max;
}

The obvious solution to both problems is to use explicit type conversion:

Max(double(10), 12.6);
Max(values, int(nValues));

As illustrated by Listings 9.35 and 9.36, function templates can be
overloaded in exactly the same way as normal functions. The same rule applies:
each overloaded definition must have a unique signature.

Both definitions of Max assume that the > operator is defined for the type
substituted in an instantiation. When this is not the case, the compiler flags it as an
error:

Point pt1(10,20), pt2(20,30);
Max(pt1, pt2); // illegal: pt1 > pt2 undefined

For some other types, the operator may be defined but not produce the desired
effect. For example, using Max to compare two strings will result in their pointer
values being compared, not their character sequences:

Max("Day", "Night"); // caution: "Day" > "Night" undesirable

This case can be correctly handled through a specialization of the function, which
involves defining an instance of the function to exactly match the proposed
argument types:

#include <string.h>
char* Max (char *str1, char *str2) // specialization of Max
{

return strcmp(str1, str2) > 0 ? str1 : str2;
}

Given this specialization, the above call now matches this function and will not
result in an instance of the function template to be instantiated for char*.

¨

174 C++ Essentials Copyright © 2005 PragSoft

Example: Binary Search

Recall the binary search algorithm implemented in Chapter 5. Binary search is
better defined as a function template so that it can be used for searching arrays of
any type. Listing 9.20 provides a template definition.

Listing 9.37
1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17

template <class Type>
int BinSearch (Type &item, Type *table, int n)
{

int bot = 0;
int top = n - 1;
int mid, cmp;

while (bot <= top) {
mid = (bot + top) / 2;
if (item == table[mid])

return mid; // return item index
else if (item < table[mid])

top = mid - 1; // restrict search to lower half
else

bot = mid + 1; // restrict search to upper half
}
return -1; // not found

}

Annotation

3 This is the template clause. It introduces Type as a type parameter, the scope
for which is the entire definition of the BinSearch function.

4 BinSearch searches for an item denoted by item in the sorted array denoted
by table, the dimension for which is denoted by n.

9 This line assumes that the operator == is defined for the type to which Type is
bound in an instantiation.

11 This line assumes that the operator < is defined for the type to which Type is
bound in an instantiation.

Instantiating BinSearch with Type bound to a built-in type such as int has
the desired effect. For example,

int nums[] = {10, 12, 30, 38, 52, 100};
cout << BinSearch(52, nums, 6) << '\n';

produces the expected output:

4

www.pragsoft.com Chapter 9: Templates 175

Now let us instantiate BinSearch for a user-defined type such as RawBook
(see Chapter 7). First, we need to ensure that the comparison operators are
defined for our user-defined type:

class RawBook {
public:

//...
 int operator < (RawBook &b) {return Compare(b) < 0;}

int operator > (RawBook &b) {return Compare(b) > 0;}
int operator == (RawBook &b) {return Compare(b) == 0;}

private:
 int Compare (RawBook&);

//...
};

int RawBook::Compare (RawBook &b)
{

int cmp;
Book *b1 = RawToBook();

 Book *b2 = b.RawToBook();
if ((cmp = strcmp(b1->title, b2->title)) == 0)

if ((cmp = strcmp(b1->author, b2->author)) == 0)
return strcmp(b1->publisher, b2->publisher);

 return cmp;
}

All are defined in terms of the private member function Compare which compares
two books by giving priority to their titles, then authors, and finally publishers. The
code fragment

RawBook books[] = {
 RawBook("%APeters\0%TBlue
Earth\0%PPhedra\0%CSydney\0%Y1981\0\n"),
 RawBook("%TPregnancy\0%AJackson\0%Y1987\0%PMiles\0\n"),
 RawBook("%TZoro\0%ASmiths\0%Y1988\0%PMiles\0\n")
};
cout << BinSearch(RawBook("%TPregnancy\0%AJackson\0%PMiles\0\n"),

books, 3) << '\n';

produces the output

1

which confirms that BinSearch is instantiated as expected.
¨

176 C++ Essentials Copyright © 2005 PragSoft

Class Template Definition

A class template definition (or declaration) is always preceded by a template
clause. For example,

template <class Type> class Stack;

declares a class template named Stack. A class template clause follows the same
syntax rules as a function template clause.

The definition of a class template is very similar to a normal class, except that
the specified type parameters can be referred to within the definition. The definition
of Stack is shown in Listing 9.38.

Listing 9.38
1

 2
3
4
5
6
7
8
9

10
11
12
13
14
15

template <class Type>
class Stack {
public:

Stack (int max) : stack(new Type[max]),
top(-1), maxSize(max) {}

~Stack (void) {delete [] stack;}
void Push (Type &val);
void Pop (void) {if (top >= 0) --top;}
Type& Top (void) {return stack[top];}
friend ostream& operator << (ostream&, Stack&);

private:
Type *stack; // stack array
int top; // index of top stack entry
const int maxSize; // max size of stack

};

The member functions of Stack are defined inline except for Push. The <<
operator is also overloaded to display the stack contents for testing purposes.
These two are defined as follows:

template <class Type>
void Stack<Type>::Push (Type &val)
{

if (top+1 < maxSize)
stack[++top] = val;

}

template <class Type>
ostream& operator << (ostream& os, Stack<Type>& s)
{

for (register i = 0; i <= s.top; ++i)
os << s.stack[i] << " ";

return os;
}

Except for within the class definition itself, a reference to a class template must
include its template parameter list. This is why the definition of Push and << use the
name Stack<Type> instead of Stack. ¨

www.pragsoft.com Chapter 9: Templates 177

Class Template Instantiation

A class template represents a generic class from which executable implementations
of the class can be generated by binding its type parameters to concrete (built-in or
user-defined) types. For example, given the earlier template definition of Stack, it
is easy to generate stacks of a variety of types through instantiation:

Stack<int> s1(10); // stack of integers
Stack<double> s2(10); // stack of doubles
Stack<Point> s3(10); // stack of points

Each of these instantiations causes the member functions of the class to be
accordingly instantiated. So, for example, in the first instantiation, the member
functions will be instantiated with Type bounds to int. Therefore,

s1.Push(10);
s1.Push(20);
s1.Push(30);
cout << s1 << '\n';

will produce the following output:

10 20 30

When a nontemplate class or function refers to a class template, it should bind
the latter’s type parameters to defined types. For example:

class Sample {
Stack<int> intStack; // ok
Stack<Type> typeStack; // illegal! Type is undefined
//...

};

The combination of a class template and arguments for all of its type parameters
(e.g., Stack<int>) represents a valid type specifier. It may appear wherever a
C++ type may appear.

If a class template is used as a part of the definition of another class template
(or function template), then the former’s type parameters can be bound to the
latter’s template parameters. For example:

template <class Type>
class Sample {

Stack<int> intStack; // ok
Stack<Type> typeStack; // ok
//...

};

¨

178 C++ Essentials Copyright © 2005 PragSoft

Nontype Parameters

Unlike a function template, not all parameters of a class template are required to
represents types. Value parameters (of defined types) may also be used. Listing
9.39 shows a variation of the Stack class, where the maximum size of the stack is
denoted by a template parameter (rather than a data member).

Listing 9.39
1

 2
3
4
5
6
7
8
9

10
11
12

template <class Type, int maxSize>
class Stack {
public:

Stack (void) : stack(new Type[maxSize]), top(-1) {}
~Stack (void) {delete [] stack;}

void Push (Type &val);
void Pop (void) {if (top >= 0) --top;}
Type &Top (void) {return stack[top];}

private:
Type *stack; // stack array
int top; // index of top stack entry

};

Both parameters are now required for referring to Stack outside the class.
For example, Push is now defined as follows:

template <class Type, int maxSize>
void Stack<Type, maxSize>::Push (Type &val)
{

if (top+1 < maxSize)
stack[++top] = val;

}

Unfortunately, the operator << cannot be defined as before, since value
template parameters are not allowed for nonmember functions:

template <class Type, int maxSize> // illegal!
ostream &operator << (ostream&, Stack<Type, maxSize>&);

Instantiating the Stack template now requires providing two arguments: a
defined type for Type and a defined integer value for maxSize. The type of the
value must match the type of value parameter exactly. The value itself must be a
constant expression which can be evaluated at compile-time. For example:

Stack<int, 10> s1; // ok
Stack<int, 10u> s2; // illegal! 10u doesn't match int
Stack<int, 5+5> s3; // ok
int n = 10;
Stack<int, n> s4; // illegal! n is a run-time value

¨

www.pragsoft.com Chapter 9: Templates 179

Class Template Specialization

The algorithms defined by the member functions of a class template may be
inappropriate for certain types. For example, instantiating the Stack class with the
type char* may lead to problems because the Push function will simply push a
string pointer onto the stack without copying it. As a result, if the original string is
destroyed the stack entry will be invalid.

Such cases can be properly handled by specializing the inappropriate member
functions. Like a global function template, a member function of a class template is
specialized by providing an implementation of it based on a particular type. For
example,

void Stack<char*>::Push (char* &val)
{

if (top+1 < maxSize) {
stack[++top] = new char[strlen(val) + 1];
strcpy(stack[top], val);

 }
}

specializes the Push member for the char* type. To free the allocated storage,
Pop needs to be specialized as well:

void Stack<char*>::Pop (void)
{

if (top >= 0)
delete stack[top--];

}

It is also possible to specialize a class template as a whole, in which case all
the class members must be specialized as a part of the process:

typedef char* Str;
class Stack<Str> {
public:

Stack<Str>::Stack (int max) : stack(new Str[max]),
top(-1), maxSize(max) {}

~Stack (void) {delete [] stack;}
void Push (Str val);
void Pop (void);
Str Top (void) {return stack[top];}
friend ostream& operator << (ostream&, Stack<Str>&);

private:
Str *stack; // stack array
int top; // index of top stack entry
const int maxSize; // max size of stack

};

Although the friend declaration of << is necessary, because this is a
nonmember function, its earlier definition suffices. ¨

180 C++ Essentials Copyright © 2005 PragSoft

Class Template Members

A class template may have constant, reference, and static members just like an
ordinary class. The use of constant and reference members is exactly as before.
Static data members are shared by the objects of an instantiation. There will
therefore be an instance of each static data member per instantiation of the class
template.

As an example, consider adding a static data member to the Stack class to
enable Top to return a value when the stack is empty:

template <class Type>
class Stack {
public:

//...
Type& Top (void);

private:
//...

 static Type dummy; // dummy entry
};

template <class Type>
Type& Stack<Type>::Top (void)
{

return top >= 0 ? stack[top] : dummy;

}

There are two ways in which a static data member can be initialized: as a
template or as a specific type. For example,

template <class Type> Type Stack<Type>::dummy = 0;

provides a template initialization for dummy. This is instantiated for each instantiation
of Stack. (Note, however, that the value 0 may be inappropriate for non-numeric
types).

Alternatively, an explicit instance of this initialization may be provided for each
instantiation of Stack. A Stack<int> instantiation, for example, could use the
following initialization of dummy:

int Stack<int>::dummy = 0;

¨

www.pragsoft.com Chapter 9: Templates 181

Class Template Friends

When a function or class is declared as a friend of a class template, the friendship
can take one of there forms, as illustrated by the following example.

Consider the Stack class template and a function template named Foo:

template <class T> void Foo (T&);

We wish to define a class named Sample and declare Foo and Stack as its
friends. The following makes a specific instance of Foo and Stack friends of all
instances of Sample:

template <class T>
class Sample { // one-to-many friendship

friend Foo<int>;
friend Stack<int>;
//...

};

Alternatively, we can make each instance of Foo and Stack a friend of its
corresponding instance of Sample:

template <class T>
class Sample { // one-to-one friendship

friend Foo<T>;
friend Stack<T>;
//...

};

This means that, for example, Foo<int> and Stack<int> are friends of
Sample<int>, but not Sample<double>.

The extreme case of making all instances of Foo and Stack friends of all
instances of Sample is expressed as:

template <class T>
class Sample { // many-to-many friendship

template <class T> friend Foo;
 template <class T> friend class Stack;

//...
};

The choice as to which form of friendship to use depends on the intentions of
the programmer.

¨

182 C++ Essentials Copyright © 2005 PragSoft

Example: Doubly-linked Lists

A container type is a type which in turn contains objects of another type. A
linked-list represents one of the simplest and most popular forms of container
types. It consists of a set of elements, each of which contains a pointer to the next
element in the list. In a doubly-linked list, each element also contains a pointer to
the previous element in the list. Figure 9.20 illustrates a doubly-linked list of
integers.

Figure 9.20 A doubly-linked list of integers.
First

Last10 20 30

Because a container class can conceivably contain objects of any type, it is
best defined as a class template. Listing 9.40 show the definition of doubly-linked
lists as two class templates.

Listing 9.40
1

2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <iostream.h>

enum Bool {false, true};
template <class Type> class List; // forward declaration

template <class Type>
class ListElem {
public:

ListElem (const Type elem) : val(elem)
{prev = next = 0;}

Type& Value (void) {return val;}
ListElem* Prev (void) {return prev;}

 ListElem * Next (void) {return next;}
friend class List<Type>;// one-to-one friendship

protected:
Type val; // the element value
ListElem *prev; // previous element in the list
ListElem *next; // next element in the list

};
//---
template <class Type>
class List {
public:

List (void) {first = last = 0;}
~List (void);

virtual void Insert (const Type&);
virtual void Remove (const Type&);
virtual Bool Member (const Type&);
friend ostream& operator <<(ostream&, List&);

protected:
ListElem<Type> *first; // first element in the list
ListElem<Type> *last; // last element in the list

};

www.pragsoft.com Chapter 9: Templates 183

Annotation

3 This forward declaration of the List class is necessary because ListElem
refers to List before the latter’s definition.

5-17 ListElem represents a list element. It consists of a value whose type is
denoted by the type parameter Type, and two pointers which point to the
previous and next elements in the list. List is declared as a one-to-one friend
of ListElem, because the former’s implementation requires access to the
nonpublic members of the latter.

20 List represents a doubly-linked list.

24 Insert inserts a new element in front of the list.

25 Remove removes the list element, if any, whose value matches its parameter.

26 Member returns true if val is in the list, and false otherwise.

27 Operator << is overloaded for the output of lists.

29-30 First and last, respectively, point to the first and last element in the list.
Note that these two are declared of type ListElem<Type>* and not
ListElem*, because the declaration is outside the ListElem class.

Insert, Remove, and Element are all defined as virtual to allow a class derived
from List to override them.

All of the member functions of ListElem are defined inline. The definition of
List member functions is as follows:

template <class Type>
List<Type>::~List (void)
{

ListElem<Type> *handy;
ListElem<Type> *next;

for (handy = first; handy != 0; handy = next) {
next = handy->next;
delete handy;

}
}

184 C++ Essentials Copyright © 2005 PragSoft

//--
-
template <class Type>
void List<Type>::Insert (const Type &elem)
{

ListElem<Type> *handy = new ListElem<Type>(elem);

handy->next = first;
if (first != 0)

first->prev = handy;
if (last == 0)

last = handy;
 first = handy;
}
//--
-
template <class Type>
void List<Type>::Remove (const Type &val)
{

ListElem<Type> *handy;

for (handy = first; handy != 0; handy = handy->next) {
if (handy->val == val) {

if (handy->next != 0)
handy->next->prev = handy->prev;

else
last = handy->prev;

if (handy->prev != 0)
handy->prev->next = handy->next;

else
first = handy->next;

delete handy;
}

}
}
//--
-
template <class Type>
Bool List<Type>::Member (const Type &val)
{

ListElem<Type> *handy;

for (handy = first; handy != 0; handy = handy->next)
if (handy->val == val)

 return true;
return false;

}

The << is overloaded for both classes. The overloading of << for ListElem
does not require it to be declared a friend of the class because it is defined in terms
of public members only:

www.pragsoft.com Chapter 9: Templates 185

template <class Type>
ostream& operator << (ostream &os, ListElem<Type> &elem)
{

os << elem.Value();
 return os;
}
//--
-
template <class Type>
ostream& operator << (ostream &os, List<Type> &list)
{

ListElem<Type> *handy = list.first;

os << "< ";
for (; handy != 0; handy = handy->Next())

os << *handy << ' ';
os << '>';

 return os;
}

Here is a simple test of the class which creates the list shown in Figure 9.20:

int main (void)
{

List<int> list;

list.Insert(30);
list.Insert(20);
list.Insert(10);
cout << "list = " << list << '\n';
if (list.Member(20)) cout << "20 is in list\n";
cout << "Removed 20\n";
list.Remove(20);
cout << "list = " << list << '\n';
return 0;

}

It will produce the following output:

list = < 10 20 30 >
20 is in list
Removed 20
< 10 30 >

¨

186 C++ Essentials Copyright © 2005 PragSoft

Derived Class Templates

A class template (or its instantiation) can serve as the base of a derived class:

template <class Type>
class SmartList : public List<Type>; // template base

class Primes : protected List<int>; // instantiated base

A template base class, such as List, should always be accompanied with its
parameter list (or arguments if instantiated). The following is therefore invalid:

template <class Type>
class SmartList : public List; // illegal! <Type> missing

It would be equally incorrect to attempt to derive a nontemplate class from a
(non-instantiated) template class:

class SmartList : public List<Type>; // illegal! template expected

It is, however, perfectly acceptable for a normal class to serve as the base of a
derived template class:

class X;
template <class Type> class Y : X; // ok

As an example of a derived class template, consider deriving a Set class from
List. Given that a set consists of unique elements only (i.e., no repetitions), all we
need to do is override the Insert member function to ensure this (see Listing
9.24).

Listing 9.41
1

 2
3
4
5
6

template <class Type>
class Set : public List<Type> {
public:

virtual void Insert (const Type &val)
{if (!Member(val)) List<Type>::Insert(val);}

};

¨

www.pragsoft.com Chapter 9: Templates 187

Exercises

9.50 Define a Swap function template for swapping two objects of the same type.

9.51 Rewrite the BubbleSort function (Exercise 5.4) as a function template. Provide a
specialization of the function for strings.

9.52 Rewrite the BinaryTree class (Exercise 6.6) as a class template. Provide a
specialization of the class for strings.

9.53 Rewrite the Database, BTree, and BStar classes (Exercise 8.4) as class
templates.

¨

188 C++ Essentials Copyright © 2005 PragSoft

10. Exception Handling

An exception is a run-time error. Proper handling of exceptions is an important
programming issue. This is because exceptions can and do happen in practice and
programs are generally expected to behave gracefully in face of such exceptions.
Unless an exception is properly handled, it is likely to result in abnormal program
termination and potential loss of work. For example, an undetected division by zero
or dereferencing of an invalid pointer will almost certainly terminate the program
abruptly.

Exception handling consists of three things: (i) the detecting of a run-time error,
(ii) raising an exception in response to the error, and (ii) taking corrective action.
The latter is called recovery. Some exceptions can be fully recovered from so that
execution can proceed unaffected. For example, an invalid argument value passed
to a function may be handled by substituting a reasonable default value for it. Other
exceptions can only be partially handled. For example, exhaustion of the heap
memory can be handled by abandoning the current operation and returning to a
state where other operations (such as saving the currently open files to avoid losing
their contents) can be attempted.

C++ provides a language facility for the uniform handling of exceptions. Under
this scheme, a section of code whose execution may lead to run-time errors is
labeled as a try block. Any fragment of code activated during the execution of a
try block can raise an exception using a throw clause. All exceptions are typed
(i.e., each exception is denoted by an object of a specific type). A try block is
followed by one or more catch clauses. Each catch clause is responsible for the
handling of exceptions of a particular type.

When an exception is raised, its type is compared against the catch clauses
following it. If a matching clause is found then its handler is executed. Otherwise,
the exception is propagated up, to an immediately enclosing try block (if any). The
process is repeated until either the exception is handled by a matching catch clause
or it is handled by a default handler.

www.pragsoft.com Chapter 10: Exception Handling 189

Flow Control

Figure 10.21 illustrates the flow of control during exception handling. It shows a
function e with a try block from which it calls f; f calls another function g from its
own try block, which in turn calls h. Each of the try blocks is followed by a list of
catch clauses. Function h throws an exception of type B. The enclosing try block's
catch clauses are examined (i.e., A and E); neither matches B. The exception is
therefore propagated to the catch clauses of the enclosing try block (i.e., C and D),
which do not match B either. Propagating the exception further up, the catch
clauses following the try block in e (i.e., A, B, and C) are examined next, resulting
in a match.

At this point flow of control is transferred from where the exception was raised
in h to the catch clause in e. The intervening stack frames for h, g, and f are
unwound: all automatic objects created by these functions are properly destroyed
by implicit calls to their destructors.

Figure 10.21 Flow control in exception handling.

try block

catch clauses
A
B
C

try block

catch clauses
C
D

try block

catch clauses
A
E

function e

function f

function g

function h

f(...);

g(...);
h(...);

throw B

Two points are worth noting. First, once an exception is raised and handled by
a matching catch clause, the flow of control is not returned to where the exception
was raised. The best that the program can do is to re-attempt the code that
resulted in the exception (e.g., call f again in the above example). Second, the only
role of a catch clause in life is to handle exceptions. If no exception is raised during
the execution of a try block, then the catch clauses following it are simply ignored.

¨

190 C++ Essentials Copyright © 2005 PragSoft

The Throw Clause

An exception is raised by a throw clause, which has the general form

throw object;

where object is an object of a built-in or user-defined type. Since an exception is
matched by the type of object and not its value, it is customary to define classes for
this exact purpose.

For example, recall the Stack class template discussed in Chapter 9 (see
Listing 10.42).

Listing 10.42
1

 2
3
4
5
6
7
8
9

10
11
12
13
14

template <class Type>
class Stack {
public:

Stack (int max);
~Stack (void) {delete [] stack;}

void Push (Type &val);
void Pop (void);
Type& Top (void);
friend ostream& operator << (ostream&, Stack<Type>);

private:
Type *stack;
int top;
const int maxSize;

};

There are a number of potential run-time errors which may affect the member
functions of Stack:

• The constructor parameter max may be given a nonsensical value. Also, the
constructor’s attempt at dynamically allocating storage for stack may fail due
to heap exhaustion. We raise exceptions BadSize and HeapFail in response
to these:

template <class Type>
Stack<Type>::Stack (int max) : maxSize(max)
{

if (max <= 0)
throw BadSize();

if ((stack = new Type[max]) == 0)
throw HeapFail();

top = -1;
}

• An attempt to push onto a full stack results in an overflow. We raise an
Overflow exception in response to this:

www.pragsoft.com Chapter 10: Exception Handling 191

template <class Type>
void Stack<Type>::Push (Type &val)
{

if (top+1 < maxSize)
stack[++top] = val;

else
throw Overflow();

}

• An attempt to pop from an empty stack results in an underflow. We raise an
Underflow exception in response to this:

template <class Type>
void Stack<Type>::Pop (void)
{

if (top >= 0)
--top;

else
throw Underflow();

}

• Attempting to examine the top element of an empty stack is clearly an error.
We raise an Empty exception in response to this:

template <class Type>
Type &Stack<Type>::Top (void)
{

if (top < 0)
 throw Empty();

return stack[top];
}

Suppose that we have defined a class named Error for exception handling
purposes. The above exceptions are easily defined as derivations of Error:

class Error { /* ... */ };
class BadSize : public Error {};
class HeapFail : public Error {};
class Overflow : public Error {};
class Underflow : public Error {};
class Empty : public Error {};

¨

192 C++ Essentials Copyright © 2005 PragSoft

The Try Block and Catch Clauses

A code fragment whose execution may potentially raise exceptions is enclosed by a
try block, which has the general form

try {
statements

}

where statements represents one or more semicolon-terminated statements. In
other words, a try block is like a compound statement preceded by the try
keyword.

A try block is followed by catch clauses for the exceptions which may be
raised during the execution of the block. The role of the catch clauses is to handle
the respective exceptions. A catch clause (also called a handler) has the general
form

catch (type par) { statements }

where type is the type of the object raised by the matching exception, par is
optional and is an identifier bound to the object raised by the exception, and
statements represents zero or more semicolon-terminated statements.

For example, continuing with our Stack class, we may write:

try {
Stack<int> s(3);
s.Push(10);
//...
s.Pop();
//...

}
catch (Underflow) {cout << "Stack underflow\n";}
catch (Overflow) {cout << "Stack overflow\n";}
catch (HeapFail) {cout << "Heap exhausted\n";}
catch (BadSize) {cout << "Bad stack size\n";}
catch (Empty) {cout << "Empty stack\n";}

For simplicity, the catch clauses here do nothing more than outputting a relevant
message.

When an exception is raised by the code within the try block, the catch clauses
are examined in the order they appear. The first matching catch clause is selected
and its statements are executed. The remaining catch clauses are ignored.

A catch clause (of type C) matches an exception (of type E) if:

• C and E are the same type, or

• One is a reference or constant of the other type, or

www.pragsoft.com Chapter 10: Exception Handling 193

• One is a nonprivate base class of the other type, or

• Both are pointers and one can be converted to another by implicit type
conversion rules.

Because of the way the catch clauses are evaluated, their order of appearance
is significant. Care should be taken to place the types which are likely to mask
other types last. For example, the clause type void* will match any pointer and
should therefore appear after other pointer type clauses:

try {
//...

}
catch (char*) {/*...*/}
catch (Point*) {/*...*/}
catch (void*) {/*...*/}

The special catch clause type

catch (...) { /* ... */ }

will match any exception type and if used, like a default case in a switch statement,
should always appear last.

The statements in a catch clause can also throw exceptions. The case where
the matched exception is to be propagated up can be signified by an empty throw:

catch (char*) {
//...
throw; // propagate up the exception

}

An exception which is not matched by any catch clause after a try block, is
propagated up to an enclosing try block. This process is continued until either the
exception is matched or no more enclosing try block remains. The latter causes the
predefined function terminate to be called, which simply terminates the program.
This function has the following type:

typedef void (*TermFun)(void);

The default terminate function can be overridden by calling set_terminate
and passing the replacing function as its argument:

TermFun set_terminate(TermFun);

Set_terminate returns the previous setting.
¨

194 C++ Essentials Copyright © 2005 PragSoft

Function Throw Lists

It is a good programming practice to specify what exceptions a function may throw.
This enables function users to quickly determine the list of exceptions that their
code will have to handle. A function prototype may be appended with a throw list
for this purpose:

type function (parameters) throw (exceptions);

where exceptions denotes a list of zero or more comma-separated exception types
which function may directly or indirectly throw. The list is also an assurance that
function will not throw any other exceptions.

For example,

void Encrypt (File &in, File &out, char *key)
 throw (InvalidKey, BadFile, const char*);

specifies that Encrypt may throw an InvalidKey, BadFile, or const char*
exception, but none other. An empty throw list specifies that the function will not
throw any exceptions:

void Sort (List list) throw ();

In absence of a throw list, the only way to find the exceptions that a function
may throw is to study its code (including other functions that it calls). It is generally
expected to at least define throw lists for frequently-used functions.

Should a function throw an exception which is not specified in its throw list, the
predefined function unexpected is called. The default behavior of unexpected is
to terminate the program. This can be overridden by calling set_unexpected
(which has the same signature as set_terminate) and passing the replacing
function as its argument:

TermFun set_unexpected(TermFun);

As before, set_unexpected returns the previous setting.
¨

www.pragsoft.com Chapter 10: Exception Handling 195

Exercises

10.54 Consider the following function which is used for receiving a packet in a network
system:

void ReceivePacket (Packet *pack, Connection *c)
{

switch (pack->Type()) {
case controlPack: //...

 break;
case dataPack: //...

 break;
case diagnosePack: //...

 break;
default: //...

 }
}

Suppose we wish to check for the following errors in ReceivePacket:

• That connection c is active. Connection::Active() will return true if this is
the case.

• That no errors have occurred in the transmission of the packet.
Packet::Valid() will return true if this is the case.

• That the packet type is known (the default case is exercised otherwise).

Define suitable exceptions for the above and modify ReceivePacket so that it
throws an appropriate exception when any of the above cases is not satisfied. Also
define a throw list for the function.

10.55 Define appropriate exceptions for the Matrix class (see Chapter 7) and modify its
functions so that they throw exceptions when errors occur, including the following:

• When the sizes of the operands of + and - are not identical.

• When the number of the columns of the first operand of * does not match the
number of rows of its second operand.

• When the row or column specified for () is outside its range.

• When heap storage is exhausted.
¨

196 C++ Essentials Copyright © 2005 PragSoft

11. The IO Library

C++ has no built-in Input/Output (IO) capability. Instead, this capability is
provided by a library. The standard C++ IO library is called the iostream library.
The definition of the library classes is divided into three header files. An additional
header file defines a set of manipulators which act on streams. These are
summarized by Table 11.15.

Figure 11.22 relates these header files to a class hierarchy for a UNIX-based
implementation of the iostream class hierarchy. The highest-level classes appear
unshaded. A user of the iostream library typically works with these classes only.
Table 11.16 summarizes the role of these high-level classes. The library also
provides four predefined stream objects for the common use of programs. These
are summarized by Table 11.17.

Table 11.15 Iostream header files.

Header File Description
iostream.h Defines a hierarchy of classes for low-level (untyped character-

level) IO and high-level (typed) IO. This includes the definition of
the ios, istream, ostream, and iostream classes.

fstream.h Derives a set of classes from those defined in iostream.h for
file IO. This includes the definition of the ifstream, ofstream,
and fstream classes.

strstream.h Derives a set of classes from those defined in iostream.h for
IO with respect to character arrays. This includes the definition of
the istrstream, ostrstream, and strstream classes.

iomanip.h Defines a set of manipulator which operate on streams to produce
useful effects.

Table 11.16 Highest-level iostream classes.

Form of IO Input Output Input and Output
Standard IO istream ostream iostream
File IO ifstream ofstream fstream
Array of char IO istrstream ostrstream strstream

Table 11.17 Predefined streams.

Stream Type Buffered Description
cin istream Yes Connected to standard input (e.g., the keyboard)
cout ostream Yes Connected to standard output (e.g., the monitor)
clog ostream Yes Connected to standard error (e.g., the monitor)
cerr ostream No Connected to standard error (e.g., the monitor)

www.pragsoft.com Chapter 11: The IO Library 197

A stream may be used for input, output, or both. The act of reading data from
an input stream is called extraction. It is performed using the >> operator (called
the extraction operator) or an iostream member function. Similarly, the act of
writing data to an output stream is called insertion, and is performed using the <<
operator (called the insertion operator) or an iostream member function. We
therefore speak of ‘extracting data from an input stream’ and ‘inserting data into an
output stream’.

Figure 11.22 Iostream class hierarchy.

iostream.h

fstream.h

strstream.h

v v v

v v

v

v

v

v

unsafe_ios

stream_MT

ios streambufunsafe_ostreamunsafe_istream

istream ostream

iostream

fstreambase unsafe_fstreambase

filebuf

ifstream ofstream

fstream

unsafe_strstreambase

strstreambuf

istrstream ostrstream

strstream

strstreambase

v means virtual base class

198 C++ Essentials Copyright © 2005 PragSoft

The Role of streambuf

The iostream library is based on a two layer model. The upper layer deals with
formatted IO of typed objects (built-in or user-defined). The lower layer deals with
unformatted IO of streams of characters, and is defined in terms of streambuf
objects (see Figure 11.23). All stream classes contain a pointer to a streambuf
object or one derived from it.

Figure 11.23 Two-layer IO model.

stream layer

streambuf layer

 inserted object

output chars

extracted object

input chars

The streambuf layer provides buffering capability and hides the details of
physical IO device handling. Under normal circumstances, the user need not worry
about or directly work with streambuf objects. These are indirectly employed by
streams. However, a basic understanding of how a streambuf operates makes it
easier to understand some of the operations of streams.

Think of a streambuf as a sequence of characters which can grow or shrink.
Depending on the type of the stream, one or two pointers are associated with this
sequence (see Figure 11.24):

• A put pointer points to the position of the next character to be deposited into
the sequence as a result of an insertion.

• A get pointer points to the position of the next character to be fetched from
the sequence as a result of an extraction.

For example, ostream only has a put pointer, istream only has a get pointer, and
iostream has both pointers.

Figure 11.24 Streambuf put and get pointers.

...sequence

get pointer

put pointer

d a t a p r e s e n t

When a stream is created, a streambuf is associated with it. Therefore, the
stream classes provide constructors which take a streambuf* argument. All
stream classes overload the insertion and extraction operators for use with a
streambuf* operand. The insertion or extraction of a streambuf causes the entire
stream represented by it to be copied. ¨

www.pragsoft.com Chapter 11: The IO Library 199

Stream Output with ostream

Ostream provides formatted output capability. Use of the insertion operator << for
stream output was introduced in Chapter 1, and employed throughout this book.
The overloading of the insertion operator for user-defined types was discussed in
Chapter 7. This section looks at the ostream member functions.

The put member function provides a simple method of inserting a single
character into an output stream. For example, assuming that os is an ostream
object,

os.put('a');

inserts 'a' into os.
Similarly, write inserts a string of characters into an output stream. For

example,

os.write(str, 10);

inserts the first 10 characters from str into os.
An output stream can be flushed by invoking its flush member function.

Flushing causes any buffered data to be immediately sent to output:

os.flush(); // flushes the os buffer

The position of an output stream put pointer can be queried using tellp and
adjusted using seekp. For example,

os.seekp(os.tellp() + 10);

moves the put pointer 10 characters forward. An optional second argument to
seekp enables the position to be specified relatively rather than absolutely. For
example, the above is equivalent to:

os.seekp(10, ios::cur);

The second argument may be one of:

• ios::beg for positions relative to the beginning of the stream,

• ios::cur for positions relative to the current put pointer position, or

• ios::end for positions relative to the end of the stream.

These are defined as a public enumeration in the ios class.
Table 11.18 summarizes the ostream member functions. All output functions

with an ostream& return type, return the stream for which they are invoked.
Multiple calls to such functions can be concatenated (i.e., combined into one
statement). For example,

200 C++ Essentials Copyright © 2005 PragSoft

os.put('a').put('b');

is valid and is equivalent to:

os.put('a');
os.put('b');

Table 11.18 Member functions of ostream.

ostream (streambuf*);
The constructor associates a streambuf (or its derivation) with the
class to provide an output stream.

ostream& put (char);
Inserts a character into the stream.

ostream& write (const signed char*, int n);
ostream& write (const unsigned char*, int n);

Inserts n signed or unsigned characters into the stream.
ostream& flush ();

Flushes the stream.
long tellp ();

Returns the current stream put pointer position.
ostream& seekp (long, seek_dir = ios::beg);

Moves the put pointer to a character position in the stream relative to
the beginning, the current, or the end position:
enum seek_dir {beg, cur, end};

¨

www.pragsoft.com Chapter 11: The IO Library 201

Stream Input with istream

Istream provides formatted input capability. Use of the extraction operator >> for
stream input was introduced in Chapter 1. The overloading of the extraction
operator for user-defined types was discussed in Chapter 7. This section looks at
the istream member functions.

The get member function provides a simple method of extracting a single
character from an input stream. For example, assuming that is is an istream object,

int ch = is.get();

extracts and returns the character denoted by the get pointer of is, and advances
the get pointer. A variation of get, called peek, does the same but does not
advance the get pointer. In other words, it allows you to examine the next input
character without extracting it. The effect of a call to get can be canceled by
calling putback which deposits the extracted character back into the stream:

is.putback(ch);

The return type of get and peek is an int (not char). This is because the end-of-
file character (EOF) is usually given the value -1.

The behavior of get is different from the extraction operator in that the former
does not skip blanks. For example, an input line consisting of

x y

(i.e., 'x', space, 'y', newline) would be extracted by four calls to get. the same
line would be extracted by two applications of >>.

Other variations of get are also provided. See Table 11.19 for a summary.
The read member function extracts a string of characters from an input

stream. For example,

char buf[64];
is.read(buf, 64);

extracts up to 64 characters from is and deposits them into buf. Of course, if EOF
is encountered in the process, less characters will be extracted. The actual number
of characters extracted is obtained by calling gcount.

A variation of read, called getline, allows extraction of characters until a
user-specified delimiter is encountered. For example,

is.getline(buf, 64, '\t');

is similar to the above call to read but stops the extraction if a tab character is
encountered. The delimiter, although extracted if encountered within the specified
number of characters, is not deposited into buf.

202 C++ Essentials Copyright © 2005 PragSoft

Input characters can be skipped by calling ignore. For example,

is.ignore(10, '\n');

extracts and discards up to 10 characters but stops if a newline character is
encountered. The delimiters itself is also extracted and discarded.

The position of an input stream get pointer can be queried using tellg and
adjusted using seekg. For example,

is.seekp(is.tellg() - 10);

moves the get pointer 10 characters backward. An optional second argument to
seekg enables the position to be specified relatively rather than absolutely. For
example, the above is equivalent to:

is.seekg(-10, ios::cur);

As with seekp, the second argument may be one of ios::beg, ios::cur, or
ios::end.

Table 11.19 summarizes the istream member functions. All input functions with
an istream& return type, return the stream for which they are invoked. Multiple
calls to such functions can therefore be concatenated. For example,

is.get(ch1).get(ch2);

is valid and is equivalent to:

is.get(ch1);
is.get(ch2);

The iostream class is derived from the istream and ostream classes and
inherits their public members as its own public members:

class iostream : public istream, public ostream {
//...

};

An iostream object is used for both insertion and extraction; it can invoke any of
the functions listed in Tables 11.18 and 11.19.

www.pragsoft.com Chapter 11: The IO Library 203

Table 11.19 Member functions of istream.

istream (streambuf*)
The constructor associates a streambuf (or its derivation) with the
class to provide an input stream.

int get ();
istream& get (signed char&);
istream& get (unsigned char&);
istream& get (streambuf&, char = '\n');

The first version extracts the next character (including EOF). The
second and third versions are similar but instead deposit the character
into their parameter. The last version extracts and deposit characters
into the given streambuf until the delimiter denoted by its last
parameter is encountered.

int peek ();
Returns the next input character without extracting it.

istream& putback (char);
Pushes an extracted character back into the stream.

istream& read (signed char*, int n);
istream& read (unsigned char*, int n);

Extracts up to n characters into the given array, but stops if EOF is
encountered.

istream& getline (signed char*, int n, char = '\n');
istream& getline (unsigned char*, int n, char = '\n');

Extracts at most n-1 characters, or until the delimiter denoted by the
last parameter or EOF is encountered, and deposit them into the given
array, which is always null-terminated. The delimiter, if encountered
and extracted, is not deposited into the array.

int gcount ();
Returns the number of characters last extracted as a result of calling
read or getline.

istream& ignore (int n = 1, int = EOF);
Skips up to n characters, but extracts and stops if the delimiter denoted
by the last parameter is encountered.

long tellg ();
Returns the current stream get pointer position.

istream& seekg (long, seek_dir = ios::cur);
Moves the get pointer to a character position in the stream relative to
the beginning, the current, or the end position:
enum seek_dir {beg, cur, end};

¨

204 C++ Essentials Copyright © 2005 PragSoft

Using the ios Class

Ios provides capabilities common to both input and output streams. It uses a
streambuf for buffering of data and maintains operational information on the state of
the streambuf (i.e., IO errors). It also keeps formatting information for the use of its
client classes (e.g., istream and ostream).

The definition of ios contains a number of public enumerations whose values
are summarized by Table 11.20. The io_state values are used for the state
data member which is a bit vector of IO error flags. The formatting flags are used
for the x_flags data member (a bit vector). The open_mode values are bit flags
for specifying the opening mode of a stream. The seek_dir values specify the
seek direction for seekp and seekg.

Table 11.20 Useful public enumerations in ios.

enum io_state: Provides status flags (for ios::state).
ios::goodbit When state is set to this value, it means that all is ok.
ios::eofbit End-of-file has been reached.
ios::badbit An invalid operation has been attempted.
ios::failbit The last IO operation attempted has failed.
ios::hardfail An unrecoverable error has taken place.

Anonymous enum: Provides formatting flags.
ios::left Left-adjust the output.
ios::right Right-adjust the output.
ios::internal Output padding indicator.
ios::dec Convert to decimal.
ios::oct Convert to octal.
ios::hex Convert to hexadecimal.
ios::showbase Show the base on output.
ios::showpoint Show the decimal point on output.
ios::uppercase Use upper case for hexadecimal output.
ios::showpos Show the + symbol for positive integers.
ios::fixed Use the floating notation for reals.
ios::scientifi

c
Use the scientific notation for reals.

ios::skipws Skip blanks (white spaces) on input.
ios::unitbuf Flush all streams after insertion.

enum open_mode: Provides values for stream opening mode.
ios::in Stream open for input.
ios::out Stream open for output.
ios::app Append data to the end of the file.
ios::ate Upon opening the stream, seek to EOF.
ios::trunc Truncate existing file.
ios::noreplace Open should fail if file already exists.
ios::nocreate Open should fail if file does not already exist.
ios::binary Binary file (as opposed to default text file).

enum seek_dir: Provides values for relative seek.
ios::beg Seek relative to the beginning of the stream.
ios::cur Seek relative to the current put/get pointer position.
ios::end Seek relative to the end of the stream.

www.pragsoft.com Chapter 11: The IO Library 205

IO operations may result in IO errors, which can be checked for using a
number of ios member functions. For example, good returns nonzero if no error
has occurred:

if (s.good())
// all is ok...

where s is an iostream. Similarly, bad returns nonzero if an invalid IO operation has
been attempted:

if (s.bad())
// invalid IO operation...

and fail returns true if the last attempted IO operation has failed (or if bad() is
true):

if (s.fail())
// last IO operation failed...

A shorthand for this is provided, based on the overloading of the ! operator:

if (!s) // same as: if (s.fail())
// ...

The opposite shorthand is provided through the overloading of the void* so that it
returns zero when fail returns nonzero. This makes it possible to check for errors
in the following fashion:

if (cin >> str)
// no error occurred

The entire error bit vector can be obtained by calling rdstate, and cleared by
calling clear. User-defined IO operations can report errors by calling setstate.
For example,

s.setstate(ios::eofbit | ios::badbit);

sets the eofbit and badbit flags.
Ios also provides various formatting member functions. For example,

precision can be used to change the precision for displaying floating point
numbers:

cout.precision(4);
cout << 233.123456789 << '\n';

This will produce the output:

233.1235

206 C++ Essentials Copyright © 2005 PragSoft

The width member function is used to specify the minimum width of the next
output object. For example,

cout.width(5);
cout << 10 << '\n';

will use exactly 5 character to display 10:

 10

An object requiring more than the specified width will not be restricted to it. Also,
the specified width applies only to the next object to be output. By default, spaces
are used to pad the object up to the specified minimum size. The padding character
can be changed using fill. For example,

cout.width(5);
cout.fill('*');
cout << 10 << '\n';

will produce:

***10

The formatting flags listed in Table 11.20 can be manipulated using the setf
member function. For example,

cout.setf(ios::scientific);
cout << 3.14 << '\n';

will display:

3.14e+00

Another version of setf takes a second argument which specifies formatting flags
which need to be reset beforehand. The second argument is typically one of:

ios::basefield ≡ ios::dec | ios::oct | ios::hex
ios::adjustfield ≡ ios::left | ios::right | ios::internal
ios::floatfield ≡ ios::scientific | ios::fixed

For example,

cout.setf(ios::hex | ios::uppercase, ios::basefield);
cout << 123456 << '\n';

will display:

1E240

www.pragsoft.com Chapter 11: The IO Library 207

Formatting flags can be reset by calling unsetf, and set as a whole or examined
by calling flags. For example, to disable the skipping of leading blanks for an
input stream such as cin, we can write:

cin.unsetf(ios::skipws);

Table 11.21 summarizes the member functions of ios.

Table 11.21 Member functions of ios.

ios (streambuf*);
The constructor associates a streambuf (or its derivation) with the
class.

void init (streambuf*);
Associates the specified streambuf with the stream.

streambuf* rdbuf (void);
Returns a pointer to the stream’s associated streambuf.

int good (void);
Examines ios::state and returns zero if bits have been set as a
result of an error.

int bad (void);
Examines the ios::badbit and ios::hardfail bits in
ios::state and returns nonzero if an IO error has occurred.

int fail (void);
Examines the ios::failbit, ios::badbit, and
ios::hardfail bits in ios::state and returns nonzero if an
operation has failed.

int eof (void);
Examines the ios::eofbit in ios::state and returns nonzero if
the end-of-file has been reached.

void clear (int = 0);
Sets the ios::state value to the value specified by the parameter.

void setstate (int);
Sets the ios::state bits specified by the parameter.

int rdstate (void);
Returns ios::state.

int precision (void);
int precision (int);

The first version returns the current floating-point precision. The second
version sets the floating-point precision and returns the previous
floating-point precision.

int width (void);
int width (int);

The first version returns the current field width. The second version sets
the field width and returns the previous setting.

char fill (void);
char fill (char);

The first version returns the current fill character. The second version
changes the fill character and returns the previous fill character.

208 C++ Essentials Copyright © 2005 PragSoft

long setf (long);
long setf (long, long);

The first version sets the formatting flags denoted by the parameter.
The second version also clears the flags denoted by its second
argument. Both return the previous setting.

long unsetf (long);
Clears the formatting flags denoted by its parameter, and returns the
previous setting.

long flags (void);
long flags (long);

The first version returns the format flags (this is a sequence of
formatting bits). The second version sets the formatting flags to a given
value (flags(0) restores default formats), and return the previous
setting.

ostream* tie (void);
ostream* tie (ostream*);

Returns the tied stream, if any, and zero otherwise. The second version
ties the stream denoted by its parameter to this stream and returns the
previously-tied stream. When two streams are tied the use of one
affects the other. For example, because cin, cerr, and clog are all
tied to cout, using any of the first three causes cout to be flushed
first.

¨

www.pragsoft.com Chapter 11: The IO Library 209

Stream Manipulators

A manipulator is an identifier that can be inserted into an output stream or extracted
from an input stream in order to produce a desired effect. For example, endl is a
commonly-used manipulator which inserts a newline into an output stream and
flushes it. Therefore,

cout << 10 << endl;

has the same effect as:

cout << 10 << '\n';

In general, most formatting operations are more easily expressed using
manipulators than using setf. For example,

cout << oct << 10 << endl;

is an easier way of saying:

cout.setf(ios::oct, ios::basefield);
cout << 10 << endl;

Some manipulators also take parameters. For example, the setw manipulator
is used to set the field width of the next IO object:

cout << setw(8) << 10; // sets the width of 10 to 8 characters

Table 11.22 summarizes the predefined manipulators of the iostream library.

Table 11.22 Predefined manipulators.

Manipulator Stream Type Description
endl output Inserts a newline character and flushes the stream.
ends output Inserts a null-terminating character.
flush output Flushes the output stream.
dec input/output Sets the conversion base to decimal.
hex input/output Sets the conversion base to hexadecimal.
oct input/output Sets the conversion base to octal.
ws input Extracts blanks (white space) characters.
setbase(int) input/output Sets the conversion base to one of 8, 10, or 16.
resetiosflags(long) input/output Clears the status flags denoted by the argument.
setiosflags(long) input/output Sets the status flags denoted by the argument.
setfill(int) input/output Sets the padding character to the argument.
setprecision(int) input/output Sets the floating-point precision to the argument.
setw(int) input/output Sets the field width to the argument.

¨

210 C++ Essentials Copyright © 2005 PragSoft

File IO with fstreams

A program which performs IO with respect to an external file should include the
header file fstream.h. Because the classes defined in this file are derived from
iostream classes, fstream.h also includes iostream.h.

A file can be opened for output by creating an ofstream object and specifying
the file name and mode as arguments to the constructor. For example,

ofstream log("log.dat", ios::out);

opens a file named log.dat for output (see Table 11.20 for a list of the open
mode values) and connects it to the ofstream log. It is also possible to create an
ofstream object first and then connect the file later by calling open:

ofstream log;
log.open("log.dat", ios::out);

Because ofstream is derived from ostream, all the public member functions of
the latter can also be invoked for ofstream objects. First, however, we should
check that the file is opened as expected:

if (!log)
cerr << "can't open 'log.dat'\n";

else {
char *str = "A piece of text";
log.write(str, strlen(str));
log << endl;

}

The external file connected to an ostream can be closed and disconnected by
calling close:

log.close();

A file can be opened for input by creating an ifstream object. For example,

ifstream inf("names.dat", ios::in);

opens the file names.dat for input and connects it to the ifstream inf. Because
ifstream is derived from istream, all the public member functions of the latter can
also be invoked for ifstream objects.

The fstream class is derived from iostream and can be used for opening a file
for input as well as output. For example:

fstream iof;

iof.open("names.dat", ios::out); // output
iof << "Adam\n";

www.pragsoft.com Chapter 11: The IO Library 211

iof.close();

char name[64];
iof.open("names.dat", ios::in); // input
iof >> name;
iof.close();

Table 11.23 summarizes the member functions of ofstream, istream, and
fstream (in addition to those inherited from their base classes).

Table 11.23 Member functions of ofstream, ifstream, and fstream.

ofstream (void);
ofstream (int fd);
ofstream (int fd, char* buf, int size);
ofstream (const char*, int=ios::out, int=filebuf::openprot);

The first version makes an ofstream which is not attached to a file. The
second version makes an ofstream and connects it to an open file
descriptor. The third version does the same but also uses a user-
specified buffer of a given size. The last version makes an ofstream
and opens and connects a specified file to it for writing.

ifstream (void);
ifstream (int fd);
ifstream (int fd, char* buf, int size);
ifstream (const char*, int=ios::in, int=filebuf::openprot);

Similar to ofstream constructors.
fstream (void);
fstream (int fd);
fstream (int fd, char* buf, int size);
fstream (const char*, int, int=filebuf::openprot);

Similar to ofstream constructors.
void open (const char*, int, int = filebuf::openprot);

Opens a file for an ofstream, ifstream, or fstream.
void close (void);

Closes the associated filebuf and file.
void attach(int);

Connects to an open file descriptor.
void setbuf(char*, int);

Assigns a user-specified buffer to the filebuf.
filebuf* rdbuf (void);

Returns the associated filebuf.

¨

212 C++ Essentials Copyright © 2005 PragSoft

Array IO with strstreams

The classes defined in strstream.h support IO operations with respect to arrays
of characters. Insertion and extraction on such streams causes the data to be
moved into and out of its character array. Because these classes are derived from
iostream classes, this file also includes iostream.h.

The three highest-level array IO classes (ostrstream, istrstream, strstream) are
very similar to the file IO counterparts (ofstream, ifstream, fstream). As before,
they are derived from iostream classes and therefore inherit their member functions.

An ostrstream object is used for output. It can be created with either a
dynamically-allocated internal buffer, or a user-specified buffer:

ostrstream odyn; // dynamic buffer
char buffer[1024];
ostrstream ssta(buffer, 1024); // user-specified buffer

The static version (ssta) is more appropriate for situations where the user is
certain of an upper bound on the stream buffer size. In the dynamic version, the
object is responsible for resizing the buffer as needed.

After all the insertions into an ostrstream have been completed, the user can
obtain a pointer to the stream buffer by calling str:

char *buf = odyn.str();

This freezes odyn (disabling all future insertions). If str is not called before odyn
goes out of scope, the class destructor will destroy the buffer. However, when str
is called, this responsibility rests with the user. Therefore, the user should make
sure that when buf is no longer needed it is deleted:

delete buf;

An istrstream object is used for input. Its definition requires a character array
to be provided as a source of input:

char data[128];
//...
istrstream istr(data, 128);

Alternatively, the user may choose not to specify the size of the character array:

istrstream istr(data);

The advantage of the former is that extraction operations will not attempt to go
beyond the end of data array.

Table 11.24 summarizes the member functions of ostrstream, istrstream, and
strstream (in addition to those inherited from their base classes).

www.pragsoft.com Chapter 11: The IO Library 213

Table 11.24 Member functions of ostrstream, istrstream, and strstream.

ostrstream (void);
ostrstream (char *buf, int size, int mode = ios::out);

The first version creates an ostrstream with a dynamically-allocated
buffer. The second version creates an ostrstream with a user-specified
buffer of a given size.

istrstream (const char *);
istrstream (const char *, int n);

The first version creates an istrstream using a given string. The second
version creates an istrstream using the first n bytes of a given string.

strstream (void);
strstream (char *buf, int size, int mode);

Similar to ostrstream constructors.
char* pcount (void);

Returns the number of bytes currently stored in the buffer of an output
stream.

char* str (void);
Freezes and returns the output stream buffer which, if dynamically
allocated, should eventually be deallocated by the user.

strstreambuf* rdbuf (void);
Returns a pointer to the associated buffer.

¨

214 C++ Essentials Copyright © 2005 PragSoft

Example: Program Annotation

Suppose we are using a language compiler which generates error message of the
form:

Error 21, invalid expression

where 21 is the number of the line in the program file where the error has occurred.
We would like to write a tool which takes the output of the compiler and uses it to
annotate the lines in the program file which are reported to contain errors, so that,
for example, instead of the above we would have something like:

0021 x = x * y +;
 Error: invalid expression

Listing 11.43 provides a function which performs the proposed annotation.
Annotation

6 Annotate takes two argument: inProg denotes the program file name and
inData denotes the name of the file which contains the messages generated
by the compiler.

8-9 InProg and inData are, respectively, connected to istreams prog and data.

12 Line is defined to be an istrstream which extracts from dLine.

21 Each time round this loop, a line of text is extracted from data into dLine,
and then processed.

22-26 We are only interested in lines which start with the word Error. When a
match is found, we reset the get pointer of data back to the beginning of the
stream, ignore characters up to the space character before the line number,
extract the line number into lineNo, and then ignore the remaining characters
up to the comma following the line number (i.e., where the actual error
message starts).

27-29 This loop skips prog lines until the line denoted by the error message is
reached.

30-33 These insertions display the prog line containing the error and its
annotation. Note that as a result of the re-arrangements, the line number is
effectively removed from the error message and displayed next to the program
line.

36-37 The ifstreams are closed before the function returning.

www.pragsoft.com Chapter 11: The IO Library 215

Listing 11.43
1

 2
3
4

5

6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39

#include <fstream.h>
#include <strstream.h>
#include <iomanip.h>
#include <string.h>

const int lineSize = 128;

int Annotate (const char *inProg, const char *inData)
{

ifstream prog(inProg, ios::in);
 ifstream data(inData, ios::in);

char pLine[lineSize]; // for prog lines
char dLine[lineSize]; // for data lines

 istrstream line(dLine, lineSize);
 char *prefix = "Error";

int prefixLen = strlen(prefix);
 int progLine = 0;

int lineNo;

if (!prog || !data) {
 cerr << "Can't open input files\n";

return -1;
}

while (data.getline(dLine, lineSize, '\n')) {
if (strncmp(dLine, prefix, prefixLen) == 0) {

line.seekg(0);
 line.ignore(lineSize, ' ');

line >> lineNo;
line.ignore(lineSize, ',');

while (progLine < lineNo &&
 prog.getline(pLine, lineSize))
++progLine;

cout << setw(4) << setfill('0') << progLine
 << " " << pLine << endl;

cout << " " << prefix << ":"
 << dLine + line.tellg() << endl;

 }
}
prog.close();
data.close();

 return 0;
}

The following main function provides a simple test for Annotate:

int main (void)
{

return Annotate("prog.dat", "data.dat");
}

The contents of these two files are as follows:

216 C++ Essentials Copyright © 2005 PragSoft

prog.dat:
#defone size 100

main (void)
{

integer n = 0;

while (n < 10]
++n;

return 0;
}

data.dat:
Error 1, Unknown directive: defone
Note 3, Return type of main assumed int
Error 5, unknown type: integer
Error 7,) expected

When run, the program will produce the following output:

0001 #defone size 100
 Error: Unknown directive: defone
0005 integer n = 0;
 Error: unknown type: integer
0007 while (n < 10]
 Error:) expected

¨

www.pragsoft.com Chapter 11: The IO Library 217

Exercises

11.56 Use the istream member functions to define an overloaded version of the >>
operator for the Set class (see Chapter 7) so that it can input sets expressed in the
conventional mathematical notation (e.g., {2, 5, 1}).

11.57 Write a program which copies its standard input, line by line, to its standard output.

11.58 Write a program which copies a user-specified file to another user-specified file.
Your program should be able to copy text as well as binary files.

11.59 Write a program which reads a C++ source file and checks that all instances of
brackets are balanced, that is, each ‘(’ has a matching ‘)’, and similarly for [] and
{}, except for when they appear inside comments or strings. A line which contains
an unbalanced bracket should be reported by a message such as the following sent
to standard output:

'{' on line 15 has no matching '}'

¨

218 C++ Essentials Copyright © 2005 PragSoft

12. The Preprocessor

Prior to compiling a program source file, the C++ compiler passes the file through a
preprocessor. The role of the preprocessor is to transform the source file into an
equivalent file by performing the preprocessing instructions contained by it. These
instructions facilitate a number of features, such as: file inclusion, conditional
compilation, and macro substitution.

Figure 12.25 illustrates the effect of the preprocessor on a simple file. It shows
the preprocessor performing the following:

• Removing program comments by substituting a single white space for each
comment.

• Performing the file inclusion (#include) and conditional compilation (#ifdef,
etc.) commands as it encounters them.

• ‘Learning’ the macros introduced by #define. It compares these names
against the identifiers in the program, and does a substitution when it finds a
match.

The preprocessor performs very minimal error checking of the preprocessing
instructions. Because it operates at a text level, it is unable to check for any sort of
language-level syntax errors. This function is performed by the compiler.

Figure 12.25 The role of the preprocessor.

int num = -13;prog.h

#include "prog.h"
#define two 2
#define Abs(x) ((x) > 0 ? (x) -(x))
int main (void) // this is a comment
{

int n = two * Abs(num);
}

prog.cpp

int main (void)
{

int n = 2 * ((num) > 0 ? (num) -(num));
}

int num = -13;
Preprocessor

www.pragsoft.com Chapter 12: The Preprocessor 219

Preprocessor Directives

Programmer instructions to the preprocessor (called directives) take the general
form:

directive tokens

The # symbol should be the first non-blank character on the line (i.e., only spaces
and tabs may appear before it). Blank symbols may also appear between the # and
directive. The following are therefore all valid and have exactly the same effect:

#define size 100
#define size 100
define size 100

A directive usually occupies a single line. A line whose last non-blank
character is \, is assumed to continue on the line following it, thus making it
possible to define multiple line directives. For example, the following multiple line
and single line directives have exactly the same effect:

#define CheckError \
if (error) \

exit(1)

#define CheckError if (error) exit(1)

A directive line may also contain comment; these are simply ignored by the
preprocessor. A # appearing on a line on its own is simply ignored.

Table 12.25 summarizes the preprocessor directives, which are explained in
detail in subsequent sections. Most directives are followed by one or more tokens.
A token is anything other than a blank.

Table 12.25 Preprocessor directives.

Directive Explanation
#define Defines a macro
#undef Undefines a macro
#include Textually includes the contents of a file
#ifdef Makes compilation of code conditional on a macro being defined
#ifndef Makes compilation of code conditional on a macro not being defined
#endif Marks the end of a conditional compilation block
#if Makes compilation of code conditional on an expression being nonzero
#else Specifies an else part for a #ifdef, #ifndef, or #if directive
#elif Combination of #else and #if
#line Change current line number and file name
#error Outputs an error message
#pragma Is implementation-specific

¨

220 C++ Essentials Copyright © 2005 PragSoft

Macro Definition

Macros are defined using the #define directive, which takes two forms: plain and
parameterized. A plain macro has the general form:

#define identifier tokens

It instructs the preprocessor to substitute tokens for every occurrence of identifier
in the rest of the file (except for inside strings). The substitution tokens can be
anything, even empty (which has the effect of removing identifier from the rest of
the file).

Plain macros are used for defining symbolic constants. For example:

#define size 512
#define word long
#define bytes sizeof(word)

Because macro substitution is also applied to directive lines, an identifier defined by
one macro can be used in a subsequent macro (e.g., use of word in bytes above).
Given the above definitions, the code fragment

word n = size * bytes;

is macro-expanded to:

long n = 512 * sizeof(long);

Use of macros for defining symbolic constants has its origins in C, which had
no language facility for defining constants. In C++, macros are less often used for
this purpose, because consts can be used instead, with the added benefit of
proper type checking.

A parameterized macro has the general form

#define identifier(parameters) tokens

where parameters is a list of one or more comma-separated identifiers. There
should be no blanks between the identifier and (. Otherwise, the whole thing is
interpreted as a plain macro whose substitution tokens part starts from (. For
example,

#define Max(x,y) ((x) > (y) ? (x) : (y))

defines a parameterized macro for working out the maximum of two quantities.
A parameterized macro is matched against a call to it, which is syntactically

very similar to a function call. A call must provide a matching number of arguments.

www.pragsoft.com Chapter 12: The Preprocessor 221

As before, the tokens part of the macro is substituted for the call. Additionally,
every occurrence of a parameter in the substituted tokens is substituted by the
corresponding argument. This is called macro expansion. For example, the call

n = Max (n - 2, k +6);

is macro-expanded to:

n = (n - 2) > (k + 6) ? (n - 2) : (k + 6);

Note that the (in a macro call may be separated from the macro identifier by
blanks.

It is generally a good idea to place additional brackets around each
occurrence of a parameter in the substitution tokens (as we have done for Max).
This protects the macro against undesirable operator precedence effects after
macro expansion.

Overlooking the fundamental difference between macros and functions can
lead to subtle programming errors. Because macros work at a textual level, the
semantics of macro expansion is not necessarily equivalent to function call. For
example, the macro call

Max(++i, j)

is expanded to

((++i) > (j) ? (++i) : (j))

which means that i may end up being incremented twice. Where as a function
version of Max would ensure that i is only incremented once.

Two facilities of C++ make the use of parameterized macros less attractive
than in C. First, C++ inline functions provide the same level of code efficiency as
macros, without the semantics pitfalls of the latter. Second, C++ templates provide
the same kind of flexibility as macros for defining generic functions and classes, with
the added benefit of proper syntax analysis and type checking.

Macros can also be redefined. However, before a macro is redefined, it
should be undefined using the #undef directive. For example:

#undef size
#define size 128
#undef Max

Use of #undef on an undefined identifier is harmless and has no effect.
¨

222 C++ Essentials Copyright © 2005 PragSoft

Quote and Concatenation Operators

The preprocessor provides two special operators or manipulating macro
parameters. The quote operator (#) is unary and takes a macro parameter
operand. It transforms its operand into a string by putting double-quotes around it.

For example, consider a parameterized macro which checks for a pointer to
be nonzero and outputs a warning message when it is zero:

#define CheckPtr(ptr) \
if ((ptr) == 0) cout << #ptr << " is zero!\n"

Use of the # operator allows the expression given as argument to CheckPtr to be
literally printed as a part of the warning message. Therefore, the call

CheckPtr(tree->left);

is expanded as:

if ((tree->left) == 0) cout << "tree->left" << " is zero!\n";

Note that defining the macro as

#define CheckPtr(ptr) \
if ((ptr) == 0) cout << "ptr is zero!\n"

would not produce the desired effect, because macro substitution is not performed
inside strings.

The concatenation operator (##) is binary and is used for concatenating two
tokens. For example, given the definition

#define internal(var) internal##var

the call

long internal(str);

expands to:

long internalstr;

This operator is rarely used for ordinary programs. It is very useful for writing
translators and code generators, as it makes it easy to build an identifier out of
fragments.

¨

www.pragsoft.com Chapter 12: The Preprocessor 223

File Inclusion

A file can be textually included in another file using the #include directive. For
example, placing

#include "constants.h"

inside a file f causes the contents of contents.h to be included in f in exactly the
position where the directive appears. The included file is usually expected to reside
in the same directory as the program file. Otherwise, a full or relative path to it
should be specified. For example:

#include "../file.h" // include from parent dir (UNIX)
#include "/usr/local/file.h" // full path (UNIX)
#include "..\file.h" // include from parent dir (DOS)
#include "\usr\local\file.h" // full path (DOS)

When including system header files for standard libraries, the file name should
be enclosed in <> instead of double-quotes. For example:

#include <iostream.h>

When the preprocessor encounters this, it looks for the file in one or more
prespecified locations on the system (e.g., the directory /usr/include/cpp on a
UNIX system). On most systems the exact locations to be searched can be
specified by the user, either as an argument to the compilation command or as a
system environment variable.

File inclusions can be nested. For example, if a file f includes another file g
which in turn includes another file h, then effectively f also includes h.

Although the preprocessor does not care about the ending of an included file
(i.e., whether it is .h or .cpp or .cc, etc.), it is customary to only include header
files in other files.

Multiple inclusion of files may or may not lead to compilation problems. For
example, if a header file contains only macros and declarations then the compiler
will not object to their reappearance. But if it contains a variable definition, for
example, the compiler will flag it as an error. The next section describes a way of
avoiding multiple inclusions of the same file.

¨

224 C++ Essentials Copyright © 2005 PragSoft

Conditional Compilation

The conditional compilation directives allow sections of code to be selectively
included for or excluded from compilation, depending on programmer-specified
conditions being satisfied. It is usually used as a portability tool for tailoring the
program code to specific hardware and software architectures. Table 12.26
summarizes the general forms of these directives (code denotes zero or more lines
of program text, and expression denotes a constant expression).

Table 12.26 General forms of conditional compilation directives.

Form Explanation
#ifdef identifier

code
#endif

If identifier is a #defined symbol then code is included
in the compilation process. Otherwise, it is excluded.

#ifndef identifier
code

#endif

If identifier is not a #defined symbol then code is
included in the compilation process. Otherwise, it is
excluded.

#if expression
code

#endif

If expression evaluates to nonzero then code is included
in the compilation process. Otherwise, it is excluded.

#ifdef identifier
code1

#else
code2

#endif

If identifier is a #defined symbol then code1 is included in
the compilation process and code2 is excluded.
Otherwise, code2 is included and code1 is excluded.
Similarly, #else can be used with #ifndef and #if.

#if expression1
code1

#elif expression2
code2

#else
code3

#endif

If expression1 evaluates to nonzero then only code1 is
included in the compilation process. Otherwise, if
expression2 evaluates to nonzero then only code2 is
included. Otherwise, code3 is included.
As before, the #else part is optional. Also, any number of
#elif directives may appear after a #if directive.

Here are two simple examples:

// Different application start-ups for beta and final version:
#ifdef BETA

DisplayBetaDialog();
#else

CheckRegistration();
#endif

// Ensure Unit is at least 4 bytes wide:
#if sizeof(int) >= 4

typedef int Unit;
#elif sizeof(long) >= 4

typedef long Unit;
#else

typedef char Unit[4];
#endif

www.pragsoft.com Chapter 12: The Preprocessor 225

One of the common uses of #if is for temporarily omitting code. This is often
done during testing and debugging when the programmer is experimenting with
suspected areas of code. Although code may also be omitted by commenting its
out (i.e., placing /* and */ around it), this approach does not work if the code
already contains /*...*/ style comments, because such comments cannot be
nested.

Code is omitted by giving #if an expression which always evaluates to zero:

#if 0
...code to be omitted

#endif

The preprocessor provides an operator called defined for use is expression
arguments of #if and #elif. For example,

#if defined BETA

has the same effect as:

#ifdef BETA

However, use of defined makes it possible to write compound logical
expressions. For example:

#if defined ALPHA || defined BETA

Conditional compilation directives can be used to avoid the multiple of
inclusion of files. For example, given an include file called file.h, we can avoid
multiple inclusions of file.h in any other file by adding the following to file.h:

#ifndef _file_h_
#define _file_h_

contents of file.h goes here
#endif

When the preprocessor reads the first inclusion of file.h, the symbol _file_h_
is undefined, hence the contents is included, causing the symbol to be defined.
Subsequent inclusions have no effect because the #ifndef directive causes the
contents to be excluded.

¨

226 C++ Essentials Copyright © 2005 PragSoft

Other Directives

The preprocessor provides three other, less-frequently-used directives. The #line
directive is used to change the current line number and file name. It has the general
form:

#line number file

where file is optional. For example,

#line 20 "file.h"

makes the compiler believe that the current line number is 20 and the current file
name is file.h. The change remains effective until another #line directive is
encountered. The directive is useful for translators which generate C++ code. It
allows the line numbers and file name to be made consistent with the original input
file, instead of any intermediate C++ file.

The #error directive is used for reporting errors by the preprocessor. It has
the general form

#error error

where error may be any sequence of tokens. When the preprocessor encounters
this, it outputs error and causes compilation to be aborted. It should therefore be
only used for reporting errors which make further compilation pointless or
impossible. For example:

#ifndef UNIX
#error This software requires the UNIX OS.
#endif

The #pragma directive is implementation-dependent. It is used by compiler
vendors to introduce nonstandard preprocessor features, specific to their own
implementation. Examples from the SUN C++ compiler include:

// align name and val starting addresses to multiples of 8 bytes:
#pragma align 8 (name, val)
char name[9];
double val;

// call MyFunction at the beginning of program execution:
#pragma init (MyFunction)

¨

www.pragsoft.com Chapter 12: The Preprocessor 227

Predefined Identifiers

The preprocessor provides a small set of predefined identifiers which denote useful
information. The standard ones are summarized by Table 12.27. Most
implementations augment this list with many nonstandard predefined identifiers.

Table 12.27 Standard predefined identifiers.

Identifier Denotes

__FILE__ Name of the file being processed

__LINE__ Current line number of the file being processed

__DATE__ Current date as a string (e.g., "25 Dec 1995")

__TIME__ Current time as a string (e.g., "12:30:55")

The predefined identifiers can be used in programs just like program constants.
For example,

#define Assert(p) \
if (!(p)) cout << __FILE__ << ": assertion on line " \

 << __LINE__ << " failed.\n"

defines an assert macro for testing program invariants. Assuming that the sample
call

Assert(ptr != 0);

appear in file prog.cpp on line 50, when the stated condition fails, the following
message is displayed:

prog.cpp: assertion on line 50 failed.
¨

228 C++ Essentials Copyright © 2005 PragSoft

Exercises

12.60 Define plain macros for the following:

• An infinite loop structure called forever.

• Pascal style begin and end keywords.

• Pascal style if-then-else statements.

• Pascal style repeat-until loop.

12.61 Define parameterized macros for the following:

• Swapping two values.

• Finding the absolute value of a number.

• Finding the center of a rectangle whose top-left and bottom-right coordinates
are given (requires two macros).

Redefine the above as inline functions or function templates as appropriate.

12.62 Write directives for the following:

• Defining Small as an unsigned char when the symbol PC is defined, and as
unsigned short otherwise.

• Including the file basics.h in another file when the symbol CPP is not defined.

• Including the file debug.h in another file when release is 0, or beta.h when
release is 1, or final.h when release is greater than 1.

12.63 Write a macro named When which returns the current date and time as a string
(e.g., "25 Dec 1995, 12:30:55"). Similarly, write a macro named Where
which returns the current location in a file as a string (e.g., "file.h: line 25").

¨

230 C++ Essentials Copyright © 2005 PragSoft

Solutions to Exercises

1.1 #include <iostream.h>

int main (void)
{

double fahrenheit;
double celsius;

cout << "Temperature in Fahrenhait: ";
cin >> fahrenheit;

celsius = 5 * (fahrenheit - 32) / 9;

cout << fahrenheit << " degrees Fahrenheit = "
 << celsius << " degrees Celsius\n";

return 0;
}

1.2 int n = -100; // valid
unsigned int i = -100; // valid
signed int = 2.9; // invalid: no variable name
long m = 2, p = 4; // valid
int 2k; // invalid: 2k not an identifier
double x = 2 * m; // valid
float y = y * 2; // valid (but dangerous!)
unsigned double z = 0.0; // invalid: can't be unsigned
double d = 0.67F; // valid
float f = 0.52L; // valid
signed char = -1786; // invalid: no variable name
char c = '$' + 2; // valid
sign char h = '\111'; // invalid: 'sign' not recognized
char *name = "Peter Pan"; // valid
unsigned char *num = "276811"; // valid

1.3 identifier // valid
seven_11 // valid
unique // valid
gross-income // invalid: - not allowed in id
gross$income // invalid: $ not allowed in id
2by2 // invalid: can't start with digit
default // invalid: default is a keyword
average_weight_of_a_large_pizza // valid
variable // valid
object.oriented // invalid: . not allowed in id

www.pragsoft.com Solutions to Exercises 231

1.4 int age; // age of a person
double employeeIncome; // employee income
long wordsInDictn; // number of words in dictionary
char letter; // letter of alphabet
char *greeting; // greeting message

2.1 // test if n is even:
n%2 == 0

// test if c is a digit:
c >= '0' && c <= '9'

// test if c is a letter:
c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z'

// test if n is odd and positive or n is even and negative:
n%2 != 0 && n >= 0 || n%2 == 0 && n < 0

// set the n-th bit of a long integer f to 1:
f |= (1L << n)

// reset the n-th bit of a long integer f to 0:
f &= ~(1L << n)

// give the absolute value of a number n:
(n >= 0 ? n : -n)

// give the number of characters in a null-terminated string literal s:
sizeof(s) - 1

2.2 (((n <= (p + q)) && (n >= (p - q))) || (n == 0))
(((++n) * (q--)) / ((++p) - q))
(n | ((p & q) ^ (p << (2 + q))))
((p < q) ? ((n < p) ? ((q * n) - 2) : ((q / n) + 1)) : (q - n))

2.3 double d = 2 * int(3.14); // initializes d to 6
long k = 3.14 - 3; // initializes k to 0
char c = 'a' + 2; // initializes c to 'c'
char c = 'p' + 'A' - 'a'; // initializes c to 'P'

2.4 #include <iostream.h>

int main (void)
{

long n;

cout << "What is the value of n? ";
cin >> n;
cout << "2 to the power of " << n << " = " << (1L << n) << '\n';
return 0;

}

2.5 #include <iostream.h>

int main (void)
{

double n1, n2, n3;

232 C++ Essentials Copyright © 2005 PragSoft

cout << "Input three numbers: ";
cin >> n1 >> n2 >> n3;
cout << (n1 <= n2 && n2 <= n3 ? "Sorted" : "Not sorted") << '\n';
return 0;

}

3.1 #include <iostream.h>

int main (void)
{

double height, weight;

cout << "Person's height (in centimeters): ";
cin >> height;
cout << "Person's weight (in kilograms: ";
cin >> weight;

if (weight < height/2.5)
cout << "Underweight\n";

else if (height/2.5 <= weight && weight <= height/2.3)
cout << "Normal\n";

else
cout << "Overweight\n";

return 0;
}

3.2 It will output the message n is negative.

This is because the else clause is associated with the if clause immediately
preceding it. The indentation in the code fragment

if (n >= 0)
if (n < 10)

cout << "n is small\n";
else

cout << "n is negative\n";

is therefore misleading, because it is understood by the compiler as:

if (n >= 0)
if (n < 10)

cout << "n is small\n";
else

cout << "n is negative\n";

The problem is fixed by placing the second if within a compound statement:

if (n >= 0) {
if (n < 10)

cout << "n is small\n";
} else

cout << "n is negative\n";

www.pragsoft.com Solutions to Exercises 233

3.3 #include <iostream.h>

int main (void)
{

int day, month, year;
char ch;

cout << "Input a date as dd/mm/yy: ";
cin >> day >> ch >> month >> ch >> year;

switch (month) {
case 1: cout << "January"; break;
case 2: cout << "February"; break;
case 3: cout << "March"; break;
case 4: cout << "April"; break;
case 5: cout << "May"; break;
case 6: cout << "June"; break;
case 7: cout << "July"; break;
case 8: cout << "August"; break;
case 9: cout << "September";break;
case 10: cout << "October"; break;
case 11: cout << "November"; break;
case 12: cout << "December"; break;

}
cout << ' ' << day << ", " << 1900 + year << '\n';
return 0;

}

3.4 #include <iostream.h>

int main (void)
{

int n;
int factorial = 1;

cout << "Input a positive integer: ";
cin >> n;

if (n >= 0) {
for (register int i = 1; i <= n; ++i)

factorial *= i;
 cout << "Factorial of " << n << " = " << factorial << '\n';
 }

return 0;
}

3.5 #include <iostream.h>

int main (void)
{

234 C++ Essentials Copyright © 2005 PragSoft

int octal, digit;
int decimal = 0;

 int power = 1;

cout << "Input an octal number: ";
cin >> octal;

for (int n = octal; n > 0; n /= 10) { // process each digit
digit = n % 10; // right-most digit
decimal = decimal + power * digit;
power *= 8;

 }
cout << "Octal(" << octal << ") = Decimal(" << decimal << ")\n";
return 0;

}

3.6 #include <iostream.h>

int main (void)
{

for (register i = 1; i <= 9; ++i)
for (register j = 1; j <= 9; ++j)

cout << i << " x " << j << " = " << i*j << '\n';

return 0;
}

4.1a #include <iostream.h>

double FahrenToCelsius (double fahren)
{

return 5 * (fahren - 32) / 9;
}

int main (void)
{

double fahrenheit;

cout << "Temperature in Fahrenhait: ";
cin >> fahrenheit;

cout << fahrenheit << " degrees Fahrenheit = "
 << FahrenToCelsius(fahrenheit) << " degrees Celsius\n";

return 0;
}

4.1b #include <iostream.h>

char* CheckWeight (double height, double weight)
{

if (weight < height/2.5)

www.pragsoft.com Solutions to Exercises 235

return "Underweight";
if (height/2.5 <= weight && weight <= height/2.3)

return "Normal";
return "Overweight";

}

int main (void)
{

double height, weight;

cout << "Person's height (in centimeters): ";
cin >> height;
cout << "Person's weight (in kilograms: ";
cin >> weight;
cout << CheckWeight(height, weight) << '\n';

return 0;
}

4.2 The value of x and y will be unchanged because Swap uses value parameters.
Consequently, it swaps a copy of x and y and not the originals.

4.3 The program will output:

Parameter
Local
Global
Parameter

4.4 enum Bool {false, true};

void Primes (unsigned int n)
{

Bool isPrime;

for (register num = 2; num <= n; ++num) {
 isPrime = true;

for (register i = 2; i < num/2; ++i)
if (num%i == 0) {

 isPrime = false;
break;

}
if (isPrime)

 cout << num << '\n';

 }
}

4.5 enum Month {
Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec

236 C++ Essentials Copyright © 2005 PragSoft

};

char* MonthStr (Month month)
{

switch (month) {
case Jan: return "January";
case Feb: return "february";
case Mar: return "March";
case Apr: return "April";
case May: return "May";
case Jun: return "June";
case Jul: return "July";
case Aug: return "August";
case Sep: return "September";
case Oct: return "October";
case Nov: return "November";
case Dec: return "December";
default: return "";

}

}

4.6 inline int IsAlpha (char ch)
{

return ch >= 'a' && ch <= 'z' || ch >= 'A' && ch <= 'Z';
}

4.7 int Power (int base, unsigned int exponent)
{

return (exponent <= 0)
 ? 1

: base * Power(base, exponent - 1);
}

4.8 double Sum (int n, double val ...)
{

va_list args; // argument list
double sum = 0;

va_start(args, val); // initialize args

while (n-- > 0) {
sum += val;
val = va_arg(args, double);

 }
va_end(args); // clean up args
return sum;

}

5.1 void ReadArray (double nums[], const int size)

www.pragsoft.com Solutions to Exercises 237

{
for (register i = 0; i < size; ++i) {

cout << "nums[" << i << "] = ";
cin >> nums[i];

}
}

void WriteArray (double nums[], const int size)
{

for (register i = 0; i < size; ++i)
cout << nums[i] << '\n';

}

5.2 void Reverse (double nums[], const int size)
{

double temp;

for (register i = 0; i < size/2; ++i) {
temp = nums[i];
nums[i] = nums[size - i - 1];
nums[size - i - 1] = temp;

}
}

5.3 double contents[][4] = {
{ 12, 25, 16, 0.4 },
{ 22, 4, 8, 0.3 },
{ 28, 5, 9, 0.5 },
{ 32, 7, 2, 0.2 }

};

void WriteContents (const double *contents,
const int rows, const int cols)

{
for (register i = 0; i < rows; ++i) {

for (register j = 0; j < cols; ++j)
cout << *(contents + i * rows + j) << ' ';

cout << '\n';
}

}

5.4 enum Bool {false, true};

void ReadNames (char *names[], const int size)
{

char name[128];

for (register i = 0; i < size; ++i) {
cout << "names[" << i << "] = ";
cin >> name;
names[i] = new char[strlen(name) + 1];

238 C++ Essentials Copyright © 2005 PragSoft

strcpy(names[i], name);
}

}

void WriteNames (char *names[], const int size)
{

for (register i = 0; i < size; ++i)
cout << names[i] << '\n';

}

void BubbleSort (char *names[], const int size)
{

Bool swapped;
char *temp;

do {
swapped = false;
for (register i = 0; i < size - 1; ++i) {

if (strcmp(names[i], names[i+1]) > 0) {
temp = names[i];
names[i] = names[i+1];
names[i+1] = temp;
swapped = true;

}
}

} while (swapped);
}

5.5 char* ReverseString (char *str)
{

int len = strlen(str);
char *result = new char[len + 1];

 char *res = result + len;

 *res-- = '\0';
while (*str)

*res-- = *str++;
return result;

}

5.6 typedef int (*Compare)(const char*, const char*);

void BubbleSort (char *names[], const int size, Compare comp)
{

Bool swapped;
char *temp;

do {
swapped = false;
for (register i = 0; i < size - 1; ++i) {

if (comp(names[i], names[i+1]) > 0) {
temp = names[i];

www.pragsoft.com Solutions to Exercises 239

names[i] = names[i+1];
names[i+1] = temp;
swapped = true;

}
}

} while (swapped);
}

5.7 typedef void (*SwapFun)(double, double);
SwapFun Swap;

typedef char *Table[];
Table table;

typedef char *&Name;
Name name;

typedef unsigned long *Values[10][20];
Values values;

6.1 Declaring Set parameters as references avoids their being copied in a call. Call-by-
reference is generally more efficient than call-by-value when the objects involved are
larger than the built-in type objects.

6.2 class Complex {
public:

Complex (double r = 0, double i = 0)
{real = r; imag = i;}

Complex Add (Complex &c);
Complex Subtract(Complex &c);
Complex Multiply(Complex &c);

 void Print (void);
private:

double real; // real part
 double imag; // imaginary part
};

Complex Complex::Add (Complex &c)
{

return Complex(real + c.real, imag + c.imag);
}

Complex Complex::Subtract (Complex &c)
{

return Complex(real - c.real, imag - c.imag);
}

Complex Complex::Multiply (Complex &c)
{

return Complex(real * c.real - imag * c.imag,
imag * c.real + real * c.imag);

}

void Complex::Print (void)
{

240 C++ Essentials Copyright © 2005 PragSoft

cout << real << " + i" << imag << '\n';
}

6.3 #include <iostream.h>
#include <string.h>

const int end = -1; // denotes the end of the list

class Menu {
public:

Menu (void) {first = 0;}
~Menu (void);

void Insert (const char *str, const int pos = end);
void Delete (const int pos = end);
int Choose (void);

private:

class Option {
public:

Option (const char*);
~Option (void) {delete name;}

const char* Name (void) {return name;}
 Option*& Next (void) {return next;}

private:
char *name; // option name

 Option *next; // next option
};

Option *first; // first option in the menu
};

Menu::Option::Option (const char* str)
{

name = new char [strlen(str) + 1];
strcpy(name, str);
next = 0;

}

Menu::~Menu (void)
{

Menu::Option *handy, *next;

for (handy = first; handy != 0; handy = next) {
next = handy->Next();
delete handy;

}
}

void Menu::Insert (const char *str, const int pos)
{

Menu::Option *option = new Menu::Option(str);

www.pragsoft.com Solutions to Exercises 241

Menu::Option *handy, *prev = 0;
 int idx = 0;

// set prev to point to before the insertion position:
for (handy = first; handy != 0 && idx++ != pos; handy = handy-

>Next())
prev = handy;

 if (prev == 0) { // empty list
 option->Next() = first; // first entry
 first = option;
} else { // insert

 option->Next() = handy;
prev->Next() = option;

}
}

void Menu::Delete (const int pos)
{

Menu::Option *handy, *prev = 0;
 int idx = 0;

// set prev to point to before the deletion position:
for (handy = first;

handy != 0 && handy->Next() != 0 && idx++ != pos;
handy = handy->Next())
prev = handy;

if (handy != 0) {
if (prev == 0) // it's the first entry

first = handy->Next();
else // it's not the first

prev->Next() = handy->Next();
delete handy;

}
}

int Menu::Choose (void)
{

int n, choice;
Menu::Option *handy = first;

do {
 n = 0;

for (handy = first; handy != 0; handy = handy->Next())
cout << ++n << ". " << handy->Name() << '\n';

cout << "Option? ";
cin >> choice;

} while (choice <= 0 || choice > n);

return choice;
}

242 C++ Essentials Copyright © 2005 PragSoft

6.4 #include <iostream.h>

const int maxCard = 10;
enum Bool {false, true};

class Set {
public:

Set (void) { first = 0; }
 ~Set (void);

int Card (void);
Bool Member (const int) const;
void AddElem (const int);
void RmvElem (const int);
void Copy (Set&);
Bool Equal (Set&);
void Intersect (Set&, Set&);
void Union (Set&, Set&);
void Print (void);

private:

class Element {
public:

Element (const int val) {value = val; next = 0;}
int Value (void) {return value;}
Element*& Next (void) {return next;}

private:
int value; // element value
Element *next; // next element

};

Element *first; // first element in the list
};

Set::~Set (void)
{

Set::Element *handy, *next;

for (handy = first; handy != 0; handy = next) {
next = handy->Next();
delete handy;

}
}

int Set::Card (void)
{

Set::Element *handy;
 int card = 0;

for (handy = first; handy != 0; handy = handy->Next())

www.pragsoft.com Solutions to Exercises 243

++card;
return card;

}

Bool Set::Member (const int elem) const
{

Set::Element *handy;

for (handy = first; handy != 0; handy = handy->Next())
if (handy->Value() == elem)

return true;
return false;

}

void Set::AddElem (const int elem)
{

if (!Member(elem)) {
Set::Element *option = new Set::Element(elem);
option->Next() = first; // prepend
first = option;

 }
}

void Set::RmvElem (const int elem)
{

Set::Element *handy, *prev = 0;
 int idx = 0;

// set prev to point to before the deletion position:
for (handy = first;

handy != 0 && handy->Next() != 0 && handy->Value() != elem;
handy = handy->Next())
prev = handy;

if (handy != 0) {
if (prev == 0) // it's the first entry

first = handy->Next();
else // it's not the first

prev->Next() = handy->Next();
delete handy;

}
}

void Set::Copy (Set &set)
{

Set::Element *handy;

for (handy = first; handy != 0; handy = handy->Next())
set.AddElem(handy->Value());

}

Bool Set::Equal (Set &set)

244 C++ Essentials Copyright © 2005 PragSoft

{
Set::Element *handy;

if (Card() != set.Card())
return false;

for (handy = first; handy != 0; handy = handy->Next())
if (!set.Member(handy->Value()))

return false;
return true;

}

void Set::Intersect (Set &set, Set &res)
{

Set::Element *handy;

for (handy = first; handy != 0; handy = handy->Next())
if (set.Member(handy->Value()))

res.AddElem(handy->Value());
}

void Set::Union (Set &set, Set &res)
{

Copy(res);
set.Copy(res);

}

void Set::Print (void)
{

Set::Element *handy;

cout << '{';
for (handy = first; handy != 0; handy = handy->Next()) {

 cout << handy->Value();
 if (handy->Next() != 0)
 cout << ',';
 }

cout << "}\n";
}

6.5 #include <iostream.h>
#include <string.h>

enum Bool {false, true};
typedef char *String;

class BinNode;
class BinTree;

class Sequence {
public:

Sequence (const int size);
 ~Sequence (void) {delete entries;}

www.pragsoft.com Solutions to Exercises 245

void Insert (const char*);
void Delete (const char*);
Bool Find (const char*);
void Print (void);

 int Size (void) {return used;}
friend BinNode* BinTree::MakeTree (Sequence &seq, int low, int high);

protected:
char **entries; // sorted array of string entries

 const int slots; // number of sequence slots
int used; // number of slots used so far

};

void
Sequence::Insert (const char *str)
{

if (used >= slots)
 return;
 for (register i = 0; i < used; ++i) {
 if (strcmp(str,entries[i]) < 0)
 break;
 }
 for (register j = used; j > i; --j)
 entries[j] = entries[j-1];
 entries[i] = new char[strlen(str) + 1];
 strcpy(entries[i], str);
 ++used;
}

void
Sequence::Delete (const char *str)
{
 for (register i = 0; i < used; ++i) {
 if (strcmp(str,entries[i]) == 0) {
 delete entries[i];
 for (register j = i; j < used-1; ++j)
 entries[j] = entries[j+1];
 --used;
 break;
 }
 }
}

Bool
Sequence::Find (const char *str)
{
 for (register i = 0; i < used; ++i)
 if (strcmp(str,entries[i]) == 0)
 return true;
 return false;
}

246 C++ Essentials Copyright © 2005 PragSoft

void
Sequence::Print (void)
{

cout << '[';
 for (register i = 0; i < used; ++i) {
 cout << entries[i];
 if (i < used-1)
 cout << ',';
 }
 cout << "]\n";
}

6.6 #include <iostream.h>
#include <string.h>

enum Bool {false,true};

class BinNode {
public:

BinNode (const char*);
 ~BinNode (void) {delete value;}

char*& Value (void) {return value;}
 BinNode*& Left (void) {return left;}
 BinNode*& Right (void) {return right;}

 void FreeSubtree (BinNode *subtree);
void InsertNode (BinNode *node, BinNode *&subtree);
void DeleteNode (const char*, BinNode *&subtree);

const BinNode* FindNode (const char*, const BinNode *subtree);
void PrintNode (const BinNode *node);

private:
char *value; // node value
BinNode *left; // pointer to left child
BinNode *right; // pointer to right child

};

class BinTree {
public:

 BinTree (void) {root = 0;}
 BinTree (Sequence &seq);

 ~BinTree(void) {root->FreeSubtree(root);}
void Insert (const char *str);
void Delete (const char *str) {root->DeleteNode(str, root);}
Bool Find (const char *str) {return root->FindNode(str,

root) != 0;}
void Print (void) {root->PrintNode(root); cout << '\n';}

protected:
BinNode* root; // root node of the tree

};

www.pragsoft.com Solutions to Exercises 247

BinNode::BinNode (const char *str)
{

value = new char[strlen(str) + 1];
 strcpy(value, str);
 left = right = 0;
}

void
BinNode::FreeSubtree (BinNode *node)
{

if (node != 0) {
FreeSubtree(node->left);
FreeSubtree(node->right);
delete node;

}
}

void
BinNode::InsertNode (BinNode *node, BinNode *&subtree)
{

if (subtree == 0)
 subtree = node;

else if (strcmp(node->value, subtree->value) <= 0)
InsertNode(node, subtree->left);

else
InsertNode(node, subtree->right);

}

void
BinNode::DeleteNode (const char *str, BinNode *&subtree)
{

int cmp;

if (subtree == 0)
return;

if ((cmp = strcmp(str, subtree->value)) < 0)
DeleteNode(str, subtree->left);

else if (cmp > 0)
DeleteNode(str, subtree->right);

else {
BinNode* handy = subtree;
if (subtree->left == 0) // no left subtree

subtree = subtree->right;
else if (subtree->right == 0) // no right subtree

subtree = subtree->left;
else { // left and right subtree

 subtree = subtree->right;
 // insert left subtree into right subtree:

InsertNode(subtree->left, subtree->right);
 }

delete handy;

248 C++ Essentials Copyright © 2005 PragSoft

}
}

const BinNode*
BinNode::FindNode (const char *str, const BinNode *subtree)
{

int cmp;

return (subtree == 0)
? 0

 : ((cmp = strcmp(str, subtree->value)) < 0
 ? FindNode(str, subtree->left)
 : (cmp > 0

? FindNode(str, subtree->right)
: subtree));

}

void
BinNode::PrintNode (const BinNode *node)
{

if (node != 0) {
PrintNode(node->left);
cout << node->value << ' ';
PrintNode(node->right);

}
}

BinTree::BinTree (Sequence &seq)
{

root = MakeTree(seq, 0, seq.Size() - 1);
}

void
BinTree::Insert (const char *str)
{

root->InsertNode(new BinNode(str), root);
}

6.7 class Sequence {
//...

friend BinNode* BinTree::MakeTree (Sequence &seq, int low, int high);
};

class BinTree {
public:

//...
 BinTree (Sequence &seq);

//...
BinNode* MakeTree (Sequence &seq, int low, int high);

};

BinTree::BinTree (Sequence &seq)

www.pragsoft.com Solutions to Exercises 249

{
root = MakeTree(seq, 0, seq.Size() - 1);

}

BinNode*
BinTree::MakeTree (Sequence &seq, int low, int high)
{

int mid = (low + high) / 2;
BinNode* node = new BinNode(seq.entries[mid]);

node->Left() = (mid == low ? 0 : MakeTree(seq, low, mid-1));
node->Right() = (mid == high ? 0 : MakeTree(seq, mid+1, high));
return node;

}

6.8 A static data member is used to keep track of the last allocated ID (see lastId
below).

class Menu {
public:

//...
 int ID (void) {return id;}
private:

//...
 int id; // menu ID
 static int lastId; // last allocated ID
};

int Menu::lastId = 0;

6.9 #include <iostream.h>
#include <string.h>

const int end = -1; // denotes the end of the list
class Option;

class Menu {
public:

Menu (void) {first = 0; id = lastId++;}
~Menu (void);

void Insert (const char *str, const Menu *submenu, const int
pos = end);

void Delete (const int pos = end);
 int Print (void);

int Choose (void) const;
 int ID (void) {return id;}

private:

class Option {
public:

Option (const char*, const Menu* = 0);

250 C++ Essentials Copyright © 2005 PragSoft

~Option (void);
const char* Name (void) {return name;}

 const Menu* Submenu (void) {return submenu;}
 Option*& Next (void) {return next;}
 void Print (void);
 int Choose (void) const;

private:
char *name; // option name
const Menu *submenu; // submenu

 Option *next; // next option
};

Option *first; // first option in the menu
 int id; // menu ID

 static int lastId; // last allocated ID
};

Menu::Option::Option (const char *str, const Menu *menu) :
submenu(menu)
{

name = new char [strlen(str) + 1];
strcpy(name, str);
next = 0;

}

Menu::Option::~Option (void)
{

delete name;
delete submenu;

}

void Menu::Option::Print (void)
{
 cout << name;
 if (submenu != 0)
 cout << " ->";
 cout << '\n';
}

int Menu::Option::Choose (void) const
{
 if (submenu == 0)
 return 0;
 else

 return submenu->Choose();
}

int Menu::lastId = 0;

Menu::~Menu (void)
{

www.pragsoft.com Solutions to Exercises 251

Menu::Option *handy, *next;

for (handy = first; handy != 0; handy = next) {
next = handy->Next();
delete handy;

}
}

void Menu::Insert (const char *str, const Menu *submenu, const int pos)
{

Menu::Option *option = new Option(str, submenu);
Menu::Option *handy, *prev = 0;

 int idx = 0;

// set prev to point to before the insertion position:
for (handy = first; handy != 0 && idx++ != pos; handy = handy-

>Next())
prev = handy;

 if (prev == 0) { // empty list
 option->Next() = first; // first entry
 first = option;
} else { // insert

 option->Next() = handy;
prev->Next() = option;

}
}

void Menu::Delete (const int pos)
{

Menu::Option *handy, *prev = 0;
 int idx = 0;

// set prev to point to before the deletion position:
for (handy = first;

handy != 0 && handy->Next() != 0 && idx++ != pos;
handy = handy->Next())
prev = handy;

if (handy != 0) {
if (prev == 0) // it's the first entry

first = handy->Next();
else // it's not the first

prev->Next() = handy->Next();
delete handy;

}
}

int Menu::Print (void)
{
 int n = 0;

Menu::Option *handy = first;

252 C++ Essentials Copyright © 2005 PragSoft

for (handy = first; handy != 0; handy = handy->Next()) {
cout << ++n << ". ";
handy->Print();

 }
 return n;
}

int Menu::Choose (void) const
{

int choice, n;

do {
 n = Print();

cout << "Option? ";
cin >> choice;

} while (choice <= 0 || choice > n);

Menu::Option *handy = first;
 n = 1;

 // move to the chosen option:
for (handy = first; n != choice && handy != 0; handy = handy-

>Next())
++n;

// choose the option:
 n = handy->Choose();

return (n == 0 ? choice : n);

}

7.1 #include <string.h>

const int Max (const int x, const int y)
{

return x >= y ? x : y;
}

const double Max (const double x, const double y)
{

return x >= y ? x : y;
}

const char* Max (const char *x, const char *y)
{

return strcmp(x,y) >= 0 ? x : y;
}

7.2 class Set {
//...

 friend Set operator - (Set&, Set&); // difference

www.pragsoft.com Solutions to Exercises 253

 friend Bool operator <= (Set&, Set&); // subset
//...

};

Set operator - (Set &set1, Set &set2)
{

Set res;

for (register i = 0; i < set1.card; ++i)
if (!(set1.elems[i] & set2))

res.elems[res.card++] = set1.elems[i];
 return res;
}

Bool operator <= (Set &set1, Set &set2)
{

if (set1.card > set2.card)
return false;

for (register i = 0; i < set1.card; ++i)
if (!(set1.elems[i] & set2))

return false;
return true;

}

7.3 class Binary {
//...
friend Binary operator - (const Binary, const Binary);

int operator [] (const int n)
{return bits[15-n] == '1' ? 1 : 0;}

//...
};

Binary operator - (const Binary n1, const Binary n2)
{

unsigned borrow = 0;
unsigned value;
Binary res = "0";

for (register i = 15; i >= 0; --i) {
 value = (n1.bits[i] == '0' ? 0 : 1) -
 (n2.bits[i] == '0' ? 0 : 1) + borrow;
 res.bits[i] = (value == -1 || value == 1 ? '1': '0');
 borrow = (value == -1 || borrow != 0 && value == 1 ? 1 : 0);
}
return res;

}

7.4 #include <iostream.h>

class Matrix {
public:

Matrix (const int rows, const int cols);

254 C++ Essentials Copyright © 2005 PragSoft

 Matrix (const Matrix&);
~Matrix (void);

double& operator () (const int row, const int col);
Matrix& operator = (const Matrix&);

friend ostream& operator << (ostream&, Matrix&);
friend Matrix operator + (Matrix&, Matrix&);
friend Matrix operator - (Matrix&, Matrix&);
friend Matrix operator * (Matrix&, Matrix&);

int Rows (void) {return rows;}
int Cols (void) {return cols;}

protected:
class Element { // nonzero element

 public:
 Element (const int row, const int col, double);
 const int Row (void) {return row;}

const int Col (void) {return col;}
double& Value (void) {return value;}
Element*& Next (void) {return next;}

 Element* CopyList(Element *list);
 void DeleteList (Element *list);
 private:

const int row, col; // row and column of element
double value; // element value
Element *next; // pointer to next element

};

double& InsertElem (Element *elem, const int row, const int
col);

int rows, cols; // matrix dimensions
Element *elems; // linked-list of elements

};

Matrix::Element::Element (const int r, const int c, double val)
 : row(r), col(c)

{
value = val;

 next = 0;
}

Matrix::Element* Matrix::Element::CopyList (Element *list)
{

Element *prev = 0;
 Element *first = 0;
 Element *copy;

for (; list != 0; list = list->Next()) {
 copy = new Element(list->Row(), list->Col(), list->Value());
 if (prev == 0)
 first = copy;
 else

www.pragsoft.com Solutions to Exercises 255

 prev->Next() = copy;
 prev = copy;
 }
 return first;
}

void Matrix::Element::DeleteList (Element *list)
{

Element *next;

for (; list != 0; list = next) {
next = list->Next();
delete list;

}
}

// InsertElem creates a new element and inserts it before
// or after the element denoted by elem.

double& Matrix::InsertElem (Element *elem, const int row, const int
col)
{

Element* newElem = new Element(row, col, 0.0);

if (elem == elems && (elems == 0 || row < elems->Row() ||
 row == elems->Row() && col < elems->Col())) {

// insert in front of the list:
newElem->Next() = elems;
elems = newElem;

} else {
 // insert after elem:

newElem->Next() = elem->Next();
elem->Next() = newElem;

}
return newElem->Value();

}

Matrix::Matrix (const int rows, const int cols)
{

Matrix::rows = rows;
Matrix::cols = cols;
elems = 0;

}

Matrix::Matrix (const Matrix &m)
{

rows = m.rows;
 cols = m.cols;

elems = m.elems->CopyList(m.elems);
}

Matrix::~Matrix (void)

256 C++ Essentials Copyright © 2005 PragSoft

{
elems->DeleteList(elems);

}

Matrix& Matrix::operator = (const Matrix &m)
{

elems->DeleteList(elems);
 rows = m.rows;
 cols = m.cols;

elems = m.elems->CopyList(m.elems);
return *this;

}

double& Matrix::operator () (const int row, const int col)
{

if (elems == 0 || row < elems->Row() ||
row == elems->Row() && col < elems->Col())

 // create an element and insert in front:
return InsertElem(elems, row, col);

// check if it's the first element in the list:
 if (row == elems->Row() && col == elems->Col())
 return elems->Value();

// search the rest of the list:
for (Element *elem = elems; elem->Next() != 0; elem = elem->Next())

if (row == elem->Next()->Row()) {
if (col == elem->Next()->Col())

return elem->Next()->Value(); // found it!
else if (col < elem->Next()->Col())

break; // doesn't exist
} else if (row < elem->Next()->Row())

break; // doesn't exist
 // create new element and insert just after elem:

return InsertElem(elem, row, col);
}

ostream& operator << (ostream &os, Matrix &m)
{

Matrix::Element *elem = m.elems;

for (register row = 1; row <= m.rows; ++row) {
for (register col = 1; col <= m.cols; ++col)

if (elem != 0 && elem->Row() == row && elem->Col() == col)
{

os << elem->Value() << '\t';
elem = elem->Next();

} else
os << 0.0 << '\t';

os << '\n';
}

 return os;

www.pragsoft.com Solutions to Exercises 257

}

Matrix operator + (Matrix &p, Matrix &q)
{

Matrix m(p.rows, q.cols);

 // copy p:
for (Matrix::Element *pe = p.elems; pe != 0; pe = pe->Next())
 m(pe->Row(), pe->Col()) = pe->Value();

 // add q:
for (Matrix::Element *qe = q.elems; qe != 0; qe = qe->Next())
 m(qe->Row(), qe->Col()) += qe->Value();
return m;

}

Matrix operator - (Matrix &p, Matrix &q)
{

Matrix m(p.rows, q.cols);

 // copy p:
for (Element *pe = p.elems; pe != 0; pe = pe->Next())
 m(pe->Row(), pe->Col()) = pe->Value();

 // subtract q:
for (Element *qe = q.elems; qe != 0; qe = qe->Next())
 m(qe->Row(), qe->Col()) -= qe->Value();
return m;

}

Matrix operator * (Matrix &p, Matrix &q)
{

Matrix m(p.rows, q.cols);

for (Element *pe = p.elems; pe != 0; pe = pe->Next())
 for (Element *qe = q.elems; qe != 0; qe = qe->Next())

 if (pe->Col() == qe->Row())
 m(pe->Row(),qe->Col()) += pe->Value() * qe->Value();

return m;
}

7.5 #include <string.h>
#include <iostream.h>

class String {
public:

String (const char*);
String (const String&);
String (const short);
~String (void);

String& operator = (const char*);
String& operator = (const String&);
char& operator [] (const short);
int Length (void) {return(len);}

258 C++ Essentials Copyright © 2005 PragSoft

friend String operator + (const String&, const String&);
friend ostream& operator << (ostream&, String&);

protected:
char *chars; // string characters
short len; // length of chars

};

String::String (const char *str)
{

len = strlen(str);
chars = new char[len + 1];
strcpy(chars, str);

}

String::String (const String &str)
{

len = str.len;
chars = new char[len + 1];
strcpy(chars, str.chars);

}

String::String (const short size)
{

len = size;
chars = new char[len + 1];
chars[0] = '\0';

}

String::~String (void)
{

delete chars;
}

String& String::operator = (const char *str)
{

short strLen = strlen(str);
if (len != strLen) {

delete chars;
 len = strLen;

chars = new char[strLen + 1];
}
strcpy(chars, str);
return(*this);

}

String& String::operator = (const String &str)
{

if (this != &str) {
if (len != str.len) {

delete chars;
 len = str.len;

www.pragsoft.com Solutions to Exercises 259

chars = new char[str.len + 1];
}
strcpy(chars, str.chars);

}
 return(*this);
}

char& String::operator [] (const short index)
{

static char dummy = '\0';
return(index >= 0 && index < len ? chars[index] : dummy);

}

String operator + (const String &str1, const String &str2)
{

String result(str1.len + str2.len);

strcpy(result.chars, str1.chars);
strcpy(result.chars + str1.len, str2.chars);
return(result);

}

ostream& operator << (ostream &out, String &str)
{

out << str.chars;
return(out);

}

7.6 #include <string.h>
#include <iostream.h>

enum Bool {false, true};
typedef unsigned char uchar;

class BitVec {
public:

 BitVec (const short dim);
 BitVec (const char* bits);
 BitVec (const BitVec&);
 ~BitVec (void) { delete vec; }

BitVec& operator = (const BitVec&);
BitVec& operator &= (const BitVec&);
BitVec& operator |= (const BitVec&);
BitVec& operator ^= (const BitVec&);
BitVec& operator <<=(const short);
BitVec& operator >>=(const short);
int operator [] (const short idx);
void Set (const short idx);
void Reset (const short idx);

BitVec operator ~ ();
BitVec operator & (const BitVec&);

260 C++ Essentials Copyright © 2005 PragSoft

BitVec operator | (const BitVec&);
BitVec operator ^ (const BitVec&);
BitVec operator << (const short n);
BitVec operator >> (const short n);
Bool operator == (const BitVec&);
Bool operator != (const BitVec&);

friend ostream& operator << (ostream&, BitVec&);

protected:
uchar *vec; // vector of 8*bytes bits
short bytes; // bytes in the vector

};

// set the bit denoted by idx to 1
inline void BitVec::Set (const short idx)
{

vec[idx/8] |= (1 << idx%8);
}

// reset the bit denoted by idx to 0
inline void BitVec::Reset (const short idx)
{

vec[idx/8] &= ~(1 << idx%8);
}

inline BitVec& BitVec::operator &= (const BitVec &v)
{

return (*this) = (*this) & v;
}

inline BitVec& BitVec::operator |= (const BitVec &v)
{

return (*this) = (*this) | v;
}

inline BitVec& BitVec::operator ^= (const BitVec &v)
{

return (*this) = (*this) ^ v;
}

inline BitVec& BitVec::operator <<= (const short n)
{

return (*this) = (*this) << n;
}

inline BitVec& BitVec::operator >>= (const short n)
{

return (*this) = (*this) >> n;
}

www.pragsoft.com Solutions to Exercises 261

// return the bit denoted by idx
inline int BitVec::operator [] (const short idx)
{

return vec[idx/8] & (1 << idx%8) ? true : false;
}

inline Bool BitVec::operator != (const BitVec &v)
{

return *this == v ? false : true;
}

BitVec::BitVec (const short dim)
{

bytes = dim / 8 + (dim % 8 == 0 ? 0 : 1);
vec = new uchar[bytes];

for (register i = 0; i < bytes; ++i)
vec[i] = 0; // all bits are initially zero

}

BitVec::BitVec (const char *bits)
{

int len = strlen(bits);
bytes = len / 8 + (len % 8 == 0 ? 0 : 1);
vec = new uchar[bytes];

for (register i = 0; i < bytes; ++i)
vec[i] = 0; // initialize all bits to zero

for (i = len - 1; i >= 0; --i)
if (*bits++ == '1') // set the 1 bits

vec[i/8] |= (1 << (i%8));
}

BitVec::BitVec (const BitVec &v)
{

bytes = v.bytes;
vec = new uchar[bytes];
for (register i = 0; i < bytes; ++i)// copy bytes

vec[i] = v.vec[i];
}

BitVec& BitVec::operator = (const BitVec& v)
{

for (register i = 0; i < (v.bytes < bytes ? v.bytes : bytes); ++i)
vec[i] = v.vec[i]; // copy bytes

for (; i < bytes; ++i) // extra bytes in *this
vec[i] = 0;

return *this;
}

// bitwise COMPLEMENT

262 C++ Essentials Copyright © 2005 PragSoft

BitVec BitVec::operator ~ (void)
{

BitVec r(bytes * 8);
for (register i = 0; i < bytes; ++i)

r.vec[i] = ~vec[i];
return r;

}

// bitwise AND
BitVec BitVec::operator & (const BitVec &v)
{

BitVec r((bytes > v.bytes ? bytes : v.bytes) * 8);
for (register i = 0; i < (bytes < v.bytes ? bytes : v.bytes); ++i)

r.vec[i] = vec[i] & v.vec[i];
return r;

}

// bitwise OR
BitVec BitVec::operator | (const BitVec &v)
{

BitVec r((bytes > v.bytes ? bytes : v.bytes) * 8);
for (register i = 0; i < (bytes < v.bytes ? bytes : v.bytes); ++i)

r.vec[i] = vec[i] | v.vec[i];
return r;

}

// bitwise exclusive-OR
BitVec BitVec::operator ^ (const BitVec &v)
{

BitVec r((bytes > v.bytes ? bytes : v.bytes) * 8);
for (register i = 0; i < (bytes < v.bytes ? bytes : v.bytes); ++i)

r.vec[i] = vec[i] ^ v.vec[i];
return r;

}

// SHIFT LEFT by n bits
BitVec BitVec::operator << (const short n)
{

BitVec r(bytes * 8);
int zeros = n / 8; // bytes on the left to become zero
int shift = n % 8; // left shift for remaining bytes
register i;

for (i = bytes - 1; i >= zeros; --i)// shift bytes left
r.vec[i] = vec[i - zeros];

for (; i >= 0; --i) // zero left bytes
r.vec[i] = 0;

unsigned char prev = 0;

for (i = zeros; i < r.bytes; ++i) { // shift bits left
r.vec[i] = (r.vec[i] << shift) | prev;

www.pragsoft.com Solutions to Exercises 263

prev = vec[i - zeros] >> (8 - shift);
}
return r;

}

// SHIFT RIGHT by n bits
BitVec BitVec::operator >> (const short n)
{

BitVec r(bytes * 8);
int zeros = n / 8; // bytes on the right to become

zero
int shift = n % 8; // right shift for remaining bytes
register i;

for (i = 0; i < bytes - zeros; ++i) // shift bytes right
r.vec[i] = vec[i + zeros];

for (; i < bytes; ++i) // zero right bytes
r.vec[i] = 0;

uchar prev = 0;
for (i = r.bytes - zeros - 1; i >= 0; --i) { // shift bits right

r.vec[i] = (r.vec[i] >> shift) | prev;
prev = vec[i + zeros] << (8 - shift);

}
return r;

}

Bool BitVec::operator == (const BitVec &v)
{

int smaller = bytes < v.bytes ? bytes : v.bytes;
register i;

for (i = 0; i < smaller; ++i) // compare bytes
if (vec[i] != v.vec[i])

return false;
for (i = smaller; i < bytes; ++i) // extra bytes in first operand

if (vec[i] != 0)
return false;

for (i = smaller; i < v.bytes; ++i) // extra bytes in second
operand

if (v.vec[i] != 0)
return false;

return true;
}

ostream& operator << (ostream &os, BitVec &v)
{

const int maxBytes = 256;
char buf[maxBytes * 8 + 1];

 char *str = buf;
int n = v.bytes > maxBytes ? maxBytes : v.bytes;

264 C++ Essentials Copyright © 2005 PragSoft

for (register i = n-1; i >= 0; --i)
for (register j = 7; j >= 0; --j)

*str++ = v.vec[i] & (1 << j) ? '1' : '0';
 *str = '\0';

os << buf;
return os;

}

8.1 #include "bitvec.h"

enum Month {
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

};

inline Bool LeapYear(const short year) {return year%4 == 0;}

class Year : public BitVec {
public:

Year (const short year);
void WorkDay (const short day); // set day as work day
void OffDay (const short day); // set day as off day
Bool Working (const short day); // true if a work day
short Day (const short day, // convert date to day

 const Month month, const short year);
protected:

short year; // calendar year
};

Year::Year (const short year) : BitVec(366)
{

Year::year = year;
}

void Year::WorkDay (const short day)
{

Set(day);
}

void Year::OffDay (const short day)
{

Reset(day);
}

Bool Year::Working (const short day)
{

return (*this)[day] == 1 ? true : false;
}

short Year::Day (const short day, const Month month, const short year)
{

static short days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 20, 31, 30, 31

www.pragsoft.com Solutions to Exercises 265

};
 days[Feb] = LeapYear(year) ? 29 : 28;

int res = day;
for (register i = Jan; i < month; ++i)

res += days[i];
return res;

}

8.2 #include <stdlib.h>
#include <time.h>
#include "matrix.h"

inline double Abs(double n) {return n >= 0 ? n : -n;}

class LinEqns : public Matrix {
public:

LinEqns (const int n, double *soln);
void Generate (const int coef);
void Solve (void);

private:
Matrix solution;

};

LinEqns::LinEqns (const int n, double* soln)
: Matrix(n, n+1), solution(n, 1)

{
for (register r = 1; r <= n; ++r)

 solution(r, 1) = soln[r - 1];
}

void LinEqns::Generate (const int coef)
{

int mid = coef / 2;

srand((unsigned int) time(0)); // set random seed

for (register r = 1; r <= Rows(); ++r) {
(*this)(r, Cols()) = 0.0; // initialize right-hand side

 // generate equations whose coefficients
 // do not exceed coef:

for (register c = 1; c < Cols(); ++c) {
(*this)(r, c) = (double) (mid - random(1000) % coef);
(*this)(r, Cols()) += (*this)(r, c) * solution(c, 1);

}
}

}

// solve equations using Gaussian elimination

266 C++ Essentials Copyright © 2005 PragSoft

void LinEqns::Solve (void)
{

double const epsilon = 1e-5;// 'almost zero' quantity
double temp;
int diag, piv, r, c;

for (diag = 1; diag <= Rows(); ++diag) {// diagonal
piv = diag; // pivot
for (r = diag + 1; r <= Rows(); ++r)// upper triangle

if (Abs((*this)(piv, diag)) < Abs((*this)(r, diag)))
piv = r; // choose new pivot

// make sure there is a unique solution:
if (Abs((*this)(piv, diag)) < epsilon) {

if (Abs((*this)(diag, Cols())) < epsilon)
cout << "infinite solutions\n";

else
cout << "no solution\n";

return;
}
if (piv != diag) {

 // swap pivit with diagonal:
for (c = 1; c <= Cols(); ++c) {

temp = (*this)(diag, c);
(*this)(diag, c) = (*this)(piv, c);
(*this)(piv, c) = temp;

}
 }

// normalise diag row so that m[diag, diag] = 1:
temp = (*this)(diag, diag);
(*this)(diag, diag) = 1.0;
for (c = diag + 1; c <= Cols(); ++c)

(*this)(diag, c) = (*this)(diag, c) / temp;

// now eliminate entries below the pivot:
for (r = diag + 1; r <= Rows(); ++r) {

double factor = (*this)(r, diag);
(*this)(r, diag) = 0.0;
for (c = diag + 1; c <= Cols(); ++c)

(*this)(r, c) -= (*this)(diag, c) * factor;
}

 // display elimination step:
cout << "eliminated below pivot in column " << diag << '\n';
cout << *this;

}

// back substitute:
Matrix soln(Rows(), 1);
soln(Rows(), 1) = (*this)(Rows(), Cols()); // the last unknown

for (r = Rows() - 1; r >= 1; --r) { // the rest
double sum = 0.0;

www.pragsoft.com Solutions to Exercises 267

for (diag = r + 1; diag <= Rows(); ++diag)
sum += (*this)(r, diag) * soln(diag, 1);

soln(r, 1) = (*this)(r, Cols()) - sum;
}
cout << "solution:\n";

 cout << soln;
}

8.3 #include "bitvec.h"

class EnumSet : public BitVec {
public:

 EnumSet (const short maxCard) : BitVec(maxCard) {}
 EnumSet (BitVec& v) : BitVec(v) {*this = (EnumSet&)v;}
friend EnumSet operator + (EnumSet &s, EnumSet &t);
friend EnumSet operator - (EnumSet &s, EnumSet &t);
friend EnumSet operator * (EnumSet &s, EnumSet &t);
friend Bool operator % (const short elem, EnumSet &s);
friend Bool operator <= (EnumSet &s, EnumSet &t);
friend Bool operator >= (EnumSet &s, EnumSet &t);
friend EnumSet& operator << (EnumSet &s, const short elem);
friend EnumSet& operator >> (EnumSet &s, const short elem);

};

inline EnumSet operator + (EnumSet &s, EnumSet &t) // union
{

return s | t;
}

inline EnumSet operator - (EnumSet &s, EnumSet &t) // difference
{

return s & ~t;
}

inline EnumSet operator * (EnumSet &s, EnumSet &t) // intersection
{

return s & t;
}

inline Bool operator % (const short elem, EnumSet &t)
{

return t[elem];
}

inline Bool operator <= (EnumSet &s, EnumSet &t)
{

return (t & s) == s;
}

inline Bool operator >= (EnumSet &s, EnumSet &t)
{

return (t & s) == t;

268 C++ Essentials Copyright © 2005 PragSoft

}

EnumSet& operator << (EnumSet &s, const short elem)
{

s.Set(elem);
return s;

}

EnumSet& operator >> (EnumSet &s, const short elem)
{

s.Reset(elem);
return s;

}

8.4 typedef int Key;
typedef double Data;
enum Bool { false, true };

class Database {
public:
virtual void Insert (Key key, Data data) {}
virtual void Delete (Key key) {}
virtual Bool Search (Key key, Data &data) {return false;}
};

A B-tree consists of a set of nodes, where each node may contain up to 2n
records and have 2n+1 children. The number n is called the order of the tree.
Every node in the tree (except for the root node) must have at least n records. This
ensures that at least 50% of the storage capacity is utilized. Furthermore, a nonleaf
node that contains m records must have exactly m+1 children. The most important
property of a B-tree is that the insert and delete operations are designed so that the
tree remains balanced at all times.

#include <iostream.h>
#include "database.h"

const int maxOrder = 256; // max tree order

class BTree : public Database {
public:

class Page;
class Item { // represents each stored item
public:

 Item (void) {right = 0;}
Item (Key, Data);

Key& KeyOf (void) {return key;}
 Data& DataOf (void) {return data;}
 Page*& Subtree (void) {return right;}

 friend ostream& operator << (ostream&, Item&);
private:
 Key key; // item's key

www.pragsoft.com Solutions to Exercises 269

 Data data; // item's data
 Page *right; // pointer to right subtree
};

class Page { // represents each tree node
public:

Page (const int size);
 ~Page (void) {delete items;}

Page*& Left (const int ofItem);
 Page*& Right (const int ofItem);
 const int Size (void) {return size;}

int& Used (void) {return used;}
 Item& operator [] (const int n) {return items[n];}
 Bool BinarySearch(Key key, int &idx);
 int CopyItems (Page *dest, const int srcIdx,

 const int destIdx, const int count);
 Bool InsertItem (Item &item, int atIdx);
 Bool DeleteItem (int atIdx);
 void PrintPage (ostream& os, const int margin);

private:
const int size; // max no. of items per page
int used; // no. of items on the page

 Page *left; // pointer to the left-most subtree
 Item *items; // the items on the page
};

public:
 BTree (const int order);
 ~BTree (void) {FreePages(root);}
virtual void Insert (Key key, Data data);
virtual void Delete (Key key);
virtual Bool Search (Key key, Data &data);
friend ostream& operator << (ostream&, BTree&);

protected:
 const int order;// order of tree
 Page *root; // root of the tree
 Page *bufP; // buffer page for distribution/merging

virtual void FreePages (Page *page);
virtual Item* SearchAux (Page *tree, Key key);
virtual Item* InsertAux (Item *item, Page *page);

virtual void DeleteAux1 (Key key, Page *page, Bool &underflow);
virtual void DeleteAux2 (Page *parent,Page *page,

 const int idx, Bool &underflow);
virtual void Underflow (Page *page, Page *child,

 int idx, Bool &underflow);
};

BTree::Item::Item (Key k, Data d)
{

270 C++ Essentials Copyright © 2005 PragSoft

key = k;
 data = d;
 right = 0;
}

ostream& operator << (ostream& os, BTree::Item &item)
{
 os << item.key << ' ' << item.data;

return os;
}

BTree::Page::Page (const int sz) : size(sz)
{

used = 0;
 left = 0;
 items = new Item[size];
}

// return the left subtree of an item

BTree::Page*& BTree::Page::Left (const int ofItem)
{
 return ofItem <= 0 ? left: items[ofItem - 1].Subtree();
}

// return the right subtree of an item

BTree::Page*& BTree::Page::Right (const int ofItem)
{
 return ofItem < 0 ? left : items[ofItem].Subtree();
}

// do a binary search on items of a page
// returns true if successful and false otherwise

Bool BTree::Page::BinarySearch (Key key, int &idx)
{
 int low = 0;
 int high = used - 1;
 int mid;

 do {
 mid = (low + high) / 2;
 if (key <= items[mid].KeyOf())
 high = mid - 1; // restrict to lower half
 if (key >= items[mid].KeyOf())
 low = mid + 1; // restrict to upper half
 } while (low <= high);

 Bool found = low - high > 1;

 idx = found ? mid : high;

www.pragsoft.com Solutions to Exercises 271

 return found;
}

// copy a set of items from page to page

int BTree::Page::CopyItems (Page *dest, const int srcIdx,
const int destIdx, const int count)

{
 for (register i = 0; i < count; ++i)// straight copy

dest->items[destIdx + i] = items[srcIdx + i];
 return count;
}

// insert an item into a page

Bool BTree::Page::InsertItem (Item &item, int atIdx)
{
 for (register i = used; i > atIdx; --i) // shift right

items[i] = items[i - 1];
 items[atIdx] = item; // insert
 return ++used >= size; // overflow?
}

// delete an item from a page

Bool BTree::Page::DeleteItem (int atIdx)
{
 for (register i = atIdx; i < used - 1; ++i) // shift left

items[i] = items[i + 1];
 return --used < size/2; // underflow?
}

// recursively print a page and its subtrees

void BTree::Page::PrintPage (ostream& os, const int margin)
{

char margBuf[128];

 // build the margin string:
for (int i = 0; i <= margin; ++i)

margBuf[i] = ' ';
margBuf[i] = '\0';

// print the left-most child:
 if (Left(0) != 0)

Left(0)->PrintPage(os, margin + 8);

// print page and remaining children:
for (i = 0; i < used; ++i) {

 os << margBuf;
os << (*this)[i] << '\n';
if (Right(i) != 0)

272 C++ Essentials Copyright © 2005 PragSoft

Right(i)->PrintPage(os, margin + 8);
}

}

BTree::BTree (const int ord) : order(ord)
{
 root = 0;
 bufP = new Page(2 * order + 2);
}

void BTree::Insert (Key key, Data data)
{
 Item item(key, data), *receive;

 if (root == 0) { // empty tree
 root = new Page(2 * order);
 root->InsertItem(item, 0);
 } else if ((receive = InsertAux(&item, root)) != 0) {
 Page *page = new Page(2 * order); // new root
 page->InsertItem(*receive, 0);
 page->Left(0) = root;
 root = page;
 }
}

void BTree::Delete (Key key)
{

Bool underflow;

DeleteAux1(key, root, underflow);
if (underflow && root->Used() == 0) { // dispose root

Page *temp = root;
root = root->Left(0);
delete temp;

 }
}

Bool BTree::Search (Key key, Data &data)
{

Item *item = SearchAux(root, key);

 if (item == 0)
 return false;
 data = item->DataOf();
 return true;
}

ostream& operator << (ostream& os, BTree &tree)
{

if (tree.root != 0)
 tree.root->PrintPage(os, 0);
 return os;

www.pragsoft.com Solutions to Exercises 273

}

// recursively free a page and its subtrees

void BTree::FreePages (Page *page)
{
 if (page != 0) {

FreePages(page->Left(0));
for (register i = 0; i < page->Used(); ++i)

FreePages(page->Right(i));
delete page;

}
}

// recursively search the tree for an item with matching key

BTree::Item* BTree::SearchAux (Page *tree, Key key)
{
 int idx;
 Item *item;

 if (tree == 0)
 return 0;
 if (tree->BinarySearch(key, idx))

return &((*tree)[idx]);
 return SearchAux(idx < 0 ? tree->Left(0)

 : tree->Right(idx), key);
}

// insert an item into a page and split the page if it overflows

BTree::Item* BTree::InsertAux (Item *item, Page *page)
{

Page *child;
int idx;

if (page->BinarySearch(item->KeyOf(), idx))
return 0; // already in tree

if ((child = page->Right(idx)) != 0)
item = InsertAux(item, child); // child is not a leaf

if (item != 0) { // page is a leaf, or passed up
if (page->Used() < 2 * order) { // insert in the page

page->InsertItem(*item, idx + 1);
} else { // page is full, split

Page *newP = new Page(2 * order);

bufP->Used() = page->CopyItems(bufP, 0, 0, page->Used());
bufP->InsertItem(*item, idx + 1);

 int size = bufP->Used();

274 C++ Essentials Copyright © 2005 PragSoft

 int half = size/2;

page->Used() = bufP->CopyItems(page, 0, 0, half);
newP->Used() = bufP->CopyItems(newP, half + 1, 0, size -

half - 1);
newP->Left(0) = bufP->Right(half);

*item = (*bufP)[half]; // the mid item
item->Subtree() = newP;
return item;

}
}
return 0;

}

// delete an item from a page and deal with underflows

void BTree::DeleteAux1 (Key key, Page *page, Bool &underflow)
{

int idx;
 Page *child;

underflow = false;
if (page == 0)

return;

if (page->BinarySearch(key, idx)) {
if ((child = page->Left(idx)) == 0) { // page is a leaf

underflow = page->DeleteItem(idx);
} else { // page is a subtree

// delete from subtree:
DeleteAux2(page, child, idx, underflow);
if (underflow)

Underflow(page, child, idx - 1, underflow);
}

} else { // is not on this page
child = page->Right(idx);
DeleteAux1(key, child, underflow); // should be in child
if (underflow)

Underflow(page, child, idx, underflow);
}

}

// delete an item and deal with underflows by borrowing
// items from neighboring pages or merging two pages

void BTree::DeleteAux2 (Page *parent,Page *page,
const int idx, Bool &underflow)

{
Page *child = page->Right(page->Used() - 1);

if (child != 0) { // page is not a leaf

www.pragsoft.com Solutions to Exercises 275

DeleteAux2(parent, child, idx, underflow); // go another level
down

if (underflow)
Underflow(page, child, page->Used() - 1, underflow);

} else { // page is a leaf
 // save right:

Page *right = parent->Right(idx);
// borrow an item from page for parent:

 page->CopyItems(parent, page->Used() - 1, idx, 1);
 // restore right:

parent->Right(idx) = right;
underflow = page->DeleteItem(page->Used() - 1);

}
}

// handle underflows

void BTree::Underflow (Page *page, Page *child,
int idx, Bool &underflow)

{
Page *left = idx < page->Used() - 1 ? child : page->Left(idx);
Page *right = left == child ? page->Right(++idx) : child;

// copy contents of left, parent item, and right onto bufP:
int size = left->CopyItems(bufP, 0, 0, left->Used());
(*bufP)[size] = (*page)[idx];
bufP->Right(size++) = right->Left(0);
size += right->CopyItems(bufP, 0, size, right->Used());

if (size > 2 * order) {
 // distribute bufP items between left and right:

int half = size/2;
left->Used() = bufP->CopyItems(left, 0, 0, half);
right->Used() = bufP->CopyItems(right, half + 1, 0, size - half

- 1);
right->Left(0) = bufP->Right(half);
(*page)[idx] = (*bufP)[half];
page->Right(idx) = right;
underflow = false;

} else {
// merge, and free the right page:
left->Used() = bufP->CopyItems(left, 0, 0, size);
underflow = page->DeleteItem(idx);
delete right;

}
}

A B*-tree is a B-tree in which most nodes are at least 2/3 full (instead of 1/2
full). Instead of splitting a node as soon as it becomes full, an attempt is made to
evenly distribute the contents of the node and its neighbor(s) between them. A
node is split only when one or both of its neighbors are full too. A B*-tree

276 C++ Essentials Copyright © 2005 PragSoft

facilitates more economic utilization of the available store, since it ensures that at
least 66% of the storage occupied by the tree is actually used. As a result, the
height of the tree is smaller, which in turn improves the search speed. The search
and delete operations are exactly as in a B-tree; only the insertion operation is
different.

class BStar : public BTree {
public:

BStar (const int order) : BTree(order) {}
virtual void Insert (Key key, Data data);

protected:
virtual Item* InsertAux (Item *item, Page *page);
virtual Item* Overflow (Item *item, Page *page,

 Page *child, int idx);
};

// insert with overflow/underflow handling

void BStar::Insert (Key key, Data data)
{

Item item(key, data);
Item *overflow;
Page *left, *right;
Bool dummy;

if (root == 0) { // empty tree
root = new Page(2 * order);
root->InsertItem(item, 0);

} else if ((overflow = InsertAux(&item, root)) != 0) {
left = root; // root becomes a left child
root = new Page(2 * order);
right = new Page (2 * order);
root->InsertItem(*overflow, 0);
root->Left(0) = left; // the left-most child of root
root->Right(0) = right; // the right child of root
right->Left(0) = overflow->Subtree();
// right is underflown (size == 0):
Underflow(root, right, 0, dummy);

}
}

// inserts and deals with overflows

Item* BStar::InsertAux (Item *item, Page *page)
{

Page *child;
int idx;

if (page->BinarySearch(item->KeyOf(), idx))
return 0; // already in tree

www.pragsoft.com Solutions to Exercises 277

if ((child = page->Right(idx)) != 0) {
// child not a leaf:
if ((item = InsertAux(item, child)) != 0)

return Overflow(item, page, child, idx);
} else if (page->Used() < 2 * order) { // item fits in node

page->InsertItem(*item, idx + 1);
} else { // node is full

int size = page->Used();
bufP->Used() = page->CopyItems(bufP, 0, 0, size);
bufP->InsertItem(*item, idx + 1);
bufP->CopyItems(page, 0, 0, size);
*item = (*bufP)[size];
return item;

}
return 0;

}

// handles underflows

Item* BStar::Overflow (Item *item, Page *page,
Page *child, int idx)

{
 Page *left = idx < page->Used() - 1 ? child : page->Left(idx);
 Page *right = left == child ? page->Right(++idx) : child;

// copy left, overflown and parent items, and right into buf:
bufP->Used() = left->CopyItems(bufP, 0, 0, left->Used());
if (child == left) {

 bufP->InsertItem(*item, bufP->Used());
bufP->InsertItem((*page)[idx], bufP->Used());
bufP->Right(bufP->Used() - 1) = right->Left(0);
bufP->Used() +=

right->CopyItems(bufP, 0, bufP->Used(), right->Used());
} else {

 bufP->InsertItem((*page)[idx], bufP->Used());
bufP->Right(bufP->Used() - 1) = right->Left(0);
bufP->Used() +=

right->CopyItems(bufP, 0, bufP->Used(), right->Used());
 bufP->InsertItem(*item, bufP->Used());

}
if (bufP->Used() < 4 * order + 2) {

// distribute buf between left and right:
 int size = bufP->Used(), half;

left->Used() = bufP->CopyItems(left, 0, 0, half = size/2);
right->Used() = bufP->CopyItems(right, half + 1, 0, size - half

- 1);
right->Left(0) = bufP->Right(half);
(*page)[idx] = (*bufP)[half];
page->Right(idx) = right;
return 0;

} else {

278 C++ Essentials Copyright © 2005 PragSoft

// split int 3 pages:
Page *newP = new Page(2 * order);

 int mid1, mid2;

mid1 = left->Used() = bufP->CopyItems(left, 0, 0, (4 * order +
1) / 3);

mid2 = right->Used() = bufP->CopyItems(right, mid1 + 1, 0, 4 *
order / 3);

mid2 += mid1 + 1;
newP->Used() = bufP->CopyItems(newP, mid2 + 1, 0, (4 * order +

2) / 3);
right->Left(0) = bufP->Right(mid1);
bufP->Right(mid1) = right;
newP->Left(0) = bufP->Right(mid2);
bufP->Right(mid2) = newP;
(*page)[idx] = (*bufP)[mid2];
if (page->Used() < 2 * order) {

page->InsertItem((*bufP)[mid1], idx);
return 0;

} else {
*item = (*page)[page->Used() - 1];

 (*page)[page->Used() - 1] = (*bufP)[mid1];
return item;

}
}

}

9.1 template <class Type>
void Swap (Type &x, Type &y)
{

Type tmp = x;
x = y;
y = tmp;

}

9.2 #include <string.h>

enum Bool {false, true};

template <class Type>
void BubbleSort (Type *names, const int size)
{

Bool swapped;

do {
swapped = false;
for (register i = 0; i < size - 1; ++i) {

if (names[i] > names[i+1]) {
Type temp = names[i];
names[i] = names[i+1];
names[i+1] = temp;
swapped = true;

www.pragsoft.com Solutions to Exercises 279

}
}

} while (swapped);
}

// specialization:

void BubbleSort (char **names, const int size)
{

Bool swapped;

do {
swapped = false;
for (register i = 0; i < size - 1; ++i) {

if (strcmp(names[i], names[i+1]) > 0) {
char *temp = names[i];
names[i] = names[i+1];
names[i+1] = temp;
swapped = true;

}
}

} while (swapped);
}

9.3 #include <string.h>
#include <iostream.h>

enum Bool {false,true};

typedef char *Str;

template <class Type>
class BinNode {
public:

BinNode (const Type&);
 ~BinNode (void) {}

Type& Value (void) {return value;}
 BinNode*& Left (void) {return left;}
 BinNode*& Right (void) {return right;}

 void FreeSubtree (BinNode *subtree);
void InsertNode (BinNode *node, BinNode *&subtree);
void DeleteNode (const Type&, BinNode *&subtree);

const BinNode* FindNode (const Type&, const BinNode *subtree);
void PrintNode (const BinNode *node);

private:
Type value; // node value
BinNode *left; // pointer to left child
BinNode *right; // pointer to right child

};

280 C++ Essentials Copyright © 2005 PragSoft

template <class Type>
class BinTree {
public:

 BinTree (void);
 ~BinTree(void);
void Insert (const Type &val);
void Delete (const Type &val);
Bool Find (const Type &val);
void Print (void);

protected:
BinNode<Type> *root;// root node of the tree

};

template <class Type>
BinNode<Type>::BinNode (const Type &val)
{

value = val;
 left = right = 0;
}

// specialization:

BinNode<Str>::BinNode (const Str &str)
{

value = new char[strlen(str) + 1];
 strcpy(value, str);
 left = right = 0;
}

template <class Type>
void BinNode<Type>::FreeSubtree (BinNode<Type> *node)
{

if (node != 0) {
FreeSubtree(node->left);
FreeSubtree(node->right);
delete node;

}
}

template <class Type>
void BinNode<Type>::InsertNode (BinNode<Type> *node, BinNode<Type>
*&subtree)
{

if (subtree == 0)
 subtree = node;

else if (node->value <= subtree->value)
InsertNode(node, subtree->left);

else
InsertNode(node, subtree->right);

}

www.pragsoft.com Solutions to Exercises 281

// specialization:

void BinNode<Str>::InsertNode (BinNode<Str> *node, BinNode<Str>
*&subtree)
{

if (subtree == 0)
 subtree = node;

else if (strcmp(node->value, subtree->value) <= 0)
InsertNode(node, subtree->left);

else
InsertNode(node, subtree->right);

}

template <class Type>
void BinNode<Type>::DeleteNode (const Type &val, BinNode<Type>
*&subtree)
{

int cmp;

if (subtree == 0)
return;

if (val < subtree->value)
DeleteNode(val, subtree->left);

else if (val > subtree->value)
DeleteNode(val, subtree->right);

else {
BinNode* handy = subtree;
if (subtree->left == 0) // no left subtree

subtree = subtree->right;
else if (subtree->right == 0) // no right subtree

subtree = subtree->left;
else { // left and right subtree

 subtree = subtree->right;
 // insert left subtree into right subtree:

InsertNode(subtree->left, subtree->right);
 }

delete handy;
}

}

// specialization:

void BinNode<Str>::DeleteNode (const Str &str, BinNode<Str> *&subtree)
{

int cmp;

if (subtree == 0)
return;

if ((cmp = strcmp(str, subtree->value)) < 0)
DeleteNode(str, subtree->left);

else if (cmp > 0)
DeleteNode(str, subtree->right);

282 C++ Essentials Copyright © 2005 PragSoft

else {
BinNode<Str>* handy = subtree;
if (subtree->left == 0) // no left subtree

subtree = subtree->right;
else if (subtree->right == 0) // no right subtree

subtree = subtree->left;
else { // left and right subtree

 subtree = subtree->right;
 // insert left subtree into right subtree:

InsertNode(subtree->left, subtree->right);
 }

delete handy;
}

}

template <class Type>
const BinNode<Type>*
BinNode<Type>::FindNode (const Type &val, const BinNode<Type> *subtree)
{

if (subtree == 0)
return 0;

 if (val < subtree->value)
 return FindNode(val, subtree->left);

if (val > subtree->value)
return FindNode(val, subtree->right);

return subtree;
}

// specialization:

const BinNode<Str>*
BinNode<Str>::FindNode (const Str &str, const BinNode<Str> *subtree)
{

int cmp;

return (subtree == 0)
? 0

 : ((cmp = strcmp(str, subtree->value)) < 0
 ? FindNode(str, subtree->left)
 : (cmp > 0

? FindNode(str, subtree->right)
: subtree));

}

template <class Type>
void BinNode<Type>::PrintNode (const BinNode<Type> *node)
{

if (node != 0) {
PrintNode(node->left);
cout << node->value << ' ';
PrintNode(node->right);

www.pragsoft.com Solutions to Exercises 283

}
}

template <class Type>
void BinTree<Type>::Insert (const Type &val)
{

root->InsertNode(new BinNode<Type>(val), root);
}

template <class Type>
BinTree<Type>::BinTree (void)
{

root = 0;
}

template <class Type>
BinTree<Type>::~BinTree(void)
{

root->FreeSubtree(root);
}

template <class Type>
void BinTree<Type>::Delete (const Type &val)
{

root->DeleteNode(val, root);
}

template <class Type>
Bool BinTree<Type>::Find (const Type &val)
{

return root->FindNode(val, root) != 0;
}

template <class Type>
void BinTree<Type>::Print (void)
{

root->PrintNode(root); cout << '\n';
}

9.4 #include <iostream.h>

enum Bool { false, true };

template <class Key, class Data>
class Database {
public:
virtual void Insert (Key key, Data data) {}
virtual void Delete (Key key) {}
virtual Bool Search (Key key, Data &data) {return false;}
};

template <class Key, class Data> class Page;

284 C++ Essentials Copyright © 2005 PragSoft

template <class Key, class Data>
class Item { // represents each stored item
public:
 Item (void) {right = 0;}

Item (Key, Data);
Key& KeyOf (void) {return key;}

 Data& DataOf (void) {return data;}
 Page<Key, Data>*& Subtree (void) {return right;}
friend ostream& operator << (ostream&, Item&);
private:
 Key key; // item's key
 Data data; // item's data
 Page<Key, Data> *right; // pointer to right subtree
};

template <class Key, class Data>
class Page { // represents each tree node
public:

Page (const int size);
 ~Page (void) {delete items;}

Page*& Left (const int ofItem);
 Page*& Right (const int ofItem);
 const int Size (void) {return size;}

int& Used (void) {return used;}
Item<Key, Data>& operator [] (const int n) {return items[n];}
Bool BinarySearch(Key key, int &idx);

 int CopyItems (Page *dest, const int srcIdx,
 const int destIdx, const int count);

Bool InsertItem (Item<Key, Data> &item, int atIdx);
 Bool DeleteItem (int atIdx);
 void PrintPage (ostream& os, const int margin);
private:

const int size; // max no. of items per page
int used; // no. of items on the page

 Page *left; // pointer to the left-most subtree
 Item<Key, Data> *items; // the items on the page
};

template <class Key, class Data>
class BTree : public Database<Key, Data> {
public:
 BTree (const int order);
 ~BTree (void) {FreePages(root);}
virtual void Insert (Key key, Data data);
virtual void Delete (Key key);
virtual Bool Search (Key key, Data &data);
friend ostream& operator << (ostream&, BTree&);

protected:
 const int order;// order of tree
 Page<Key, Data> *root; // root of the tree

www.pragsoft.com Solutions to Exercises 285

 Page<Key, Data> *bufP; // buffer page for distribution/merging

virtual void FreePages (Page<Key, Data> *page);
virtual Item<Key, Data>*SearchAux (Page<Key, Data> *tree, Key key);
virtual Item<Key, Data>*InsertAux (Item<Key, Data> *item,

 Page<Key, Data> *page);

virtual void DeleteAux1 (Key key, Page<Key, Data> *page,
 Bool &underflow);

virtual void DeleteAux2 (Page<Key, Data> *parent,
 Page<Key, Data> *page,
 const int idx, Bool &underflow);

virtual void Underflow (Page<Key, Data> *page,
 Page<Key, Data> *child,
 int idx, Bool &underflow);

};

template <class Key, class Data>
Item<Key, Data>::Item (Key k, Data d)
{

key = k;
 data = d;
 right = 0;
}

template <class Key, class Data>
ostream& operator << (ostream& os, Item<Key,Data> &item)
{
 os << item.key << ' ' << item.data;

return os;
}

template <class Key, class Data>
Page<Key, Data>::Page (const int sz) : size(sz)
{

used = 0;
 left = 0;
 items = new Item<Key, Data>[size];
}

// return the left subtree of an item

template <class Key, class Data>
Page<Key, Data>*& Page<Key, Data>::Left (const int ofItem)
{
 return ofItem <= 0 ? left: items[ofItem - 1].Subtree();
}

// return the right subtree of an item

template <class Key, class Data>
Page<Key, Data>*& Page<Key, Data>::Right (const int ofItem)

286 C++ Essentials Copyright © 2005 PragSoft

{
 return ofItem < 0 ? left : items[ofItem].Subtree();
}

// do a binary search on items of a page
// returns true if successful and false otherwise

template <class Key, class Data>
Bool Page<Key, Data>::BinarySearch (Key key, int &idx)
{
 int low = 0;
 int high = used - 1;
 int mid;

 do {
 mid = (low + high) / 2;
 if (key <= items[mid].KeyOf())
 high = mid - 1; // restrict to lower half
 if (key >= items[mid].KeyOf())
 low = mid + 1; // restrict to upper half
 } while (low <= high);

 Bool found = low - high > 1;

 idx = found ? mid : high;
 return found;
}

// copy a set of items from page to page

template <class Key, class Data>
int Page<Key, Data>::CopyItems (Page<Key, Data> *dest, const int
srcIdx,

const int destIdx, const int count)
{
 for (register i = 0; i < count; ++i)// straight copy

dest->items[destIdx + i] = items[srcIdx + i];
 return count;
}

// insert an item into a page

template <class Key, class Data>
Bool Page<Key, Data>::InsertItem (Item<Key, Data> &item, int atIdx)
{
 for (register i = used; i > atIdx; --i) // shift right

items[i] = items[i - 1];
 items[atIdx] = item; // insert
 return ++used >= size; // overflow?
}

// delete an item from a page

www.pragsoft.com Solutions to Exercises 287

template <class Key, class Data>
Bool Page<Key, Data>::DeleteItem (int atIdx)
{
 for (register i = atIdx; i < used - 1; ++i) // shift left

items[i] = items[i + 1];
 return --used < size/2; // underflow?
}

// recursively print a page and its subtrees

template <class Key, class Data>
void Page<Key, Data>::PrintPage (ostream& os, const int margin)
{

char margBuf[128];

 // build the margin string:
for (int i = 0; i <= margin; ++i)

margBuf[i] = ' ';
margBuf[i] = '\0';

// print the left-most child:
 if (Left(0) != 0)

Left(0)->PrintPage(os, margin + 8);

// print page and remaining children:
for (i = 0; i < used; ++i) {

 os << margBuf;
os << (*this)[i] << '\n';
if (Right(i) != 0)

Right(i)->PrintPage(os, margin + 8);
}

}

template <class Key, class Data>
BTree<Key, Data>::BTree (const int ord) : order(ord)
{
 root = 0;
 bufP = new Page<Key, Data>(2 * order + 2);
}

template <class Key, class Data>
void BTree<Key, Data>::Insert (Key key, Data data)
{
 Item<Key, Data> item(key, data), *receive;

 if (root == 0) { // empty tree
 root = new Page<Key, Data>(2 * order);
 root->InsertItem(item, 0);
 } else if ((receive = InsertAux(&item, root)) != 0) {
 Page<Key, Data> *page = new Page<Key, Data>(2 * order); // new
root

288 C++ Essentials Copyright © 2005 PragSoft

 page->InsertItem(*receive, 0);
 page->Left(0) = root;
 root = page;
 }
}

template <class Key, class Data>
void BTree<Key, Data>::Delete (Key key)
{

Bool underflow;

DeleteAux1(key, root, underflow);
if (underflow && root->Used() == 0) { // dispose root

Page<Key, Data> *temp = root;
root = root->Left(0);
delete temp;

 }
}

template <class Key, class Data>
Bool BTree<Key, Data>::Search (Key key, Data &data)
{

Item<Key, Data> *item = SearchAux(root, key);

 if (item == 0)
 return false;
 data = item->DataOf();
 return true;
}

template <class Key, class Data>
ostream& operator << (ostream& os, BTree<Key, Data> &tree)
{

if (tree.root != 0)
 tree.root->PrintPage(os, 0);
 return os;
}

// recursively free a page and its subtrees

template <class Key, class Data>
void BTree<Key, Data>::FreePages (Page<Key, Data> *page)
{
 if (page != 0) {

FreePages(page->Left(0));
for (register i = 0; i < page->Used(); ++i)

FreePages(page->Right(i));
delete page;

}
}

// recursively search the tree for an item with matching key

www.pragsoft.com Solutions to Exercises 289

template <class Key, class Data>
Item<Key, Data>* BTree<Key, Data>::

SearchAux (Page<Key, Data> *tree, Key key)
{
 int idx;
 Item<Key, Data> *item;

 if (tree == 0)
 return 0;
 if (tree->BinarySearch(key, idx))

return &((*tree)[idx]);
 return SearchAux(idx < 0 ? tree->Left(0)

 : tree->Right(idx), key);
}

// insert an item into a page and split the page if it overflows

template <class Key, class Data>
Item<Key, Data>* BTree<Key, Data>::InsertAux (Item<Key, Data> *item,

Page<Key, Data> *page)
{

Page<Key, Data> *child;
int idx;

if (page->BinarySearch(item->KeyOf(), idx))
return 0; // already in tree

if ((child = page->Right(idx)) != 0)
item = InsertAux(item, child); // child is not a leaf

if (item != 0) { // page is a leaf, or passed up
if (page->Used() < 2 * order) { // insert in the page

page->InsertItem(*item, idx + 1);
} else { // page is full, split

Page<Key, Data> *newP = new Page<Key, Data>(2 * order);

bufP->Used() = page->CopyItems(bufP, 0, 0, page->Used());
bufP->InsertItem(*item, idx + 1);

 int size = bufP->Used();
 int half = size/2;

page->Used() = bufP->CopyItems(page, 0, 0, half);
newP->Used() = bufP->CopyItems(newP, half + 1, 0, size -

half - 1);
newP->Left(0) = bufP->Right(half);

*item = (*bufP)[half]; // the mid item
item->Subtree() = newP;
return item;

}

290 C++ Essentials Copyright © 2005 PragSoft

}
return 0;

}

// delete an item from a page and deal with underflows

template <class Key, class Data>
void BTree<Key, Data>::DeleteAux1 (Key key,

Page<Key, Data> *page, Bool &underflow)
{

int idx;
 Page<Key, Data> *child;

underflow = false;
if (page == 0)

return;

if (page->BinarySearch(key, idx)) {
if ((child = page->Left(idx)) == 0) { // page is a leaf

underflow = page->DeleteItem(idx);
} else { // page is a subtree

// delete from subtree:
DeleteAux2(page, child, idx, underflow);
if (underflow)

Underflow(page, child, idx - 1, underflow);
}

} else { // is not on this page
child = page->Right(idx);
DeleteAux1(key, child, underflow); // should be in child
if (underflow)

Underflow(page, child, idx, underflow);
}

}

// delete an item and deal with underflows by borrowing
// items from neighboring pages or merging two pages

template <class Key, class Data>
void BTree<Key, Data>::DeleteAux2 (Page<Key, Data> *parent,

Page<Key, Data> *page,
const int idx, Bool &underflow)

{
Page<Key, Data> *child = page->Right(page->Used() - 1);

if (child != 0) { // page is not a leaf
DeleteAux2(parent, child, idx, underflow); // go another level

down
if (underflow)

Underflow(page, child, page->Used() - 1, underflow);
} else { // page is a leaf

 // save right:
Page<Key, Data> *right = parent->Right(idx);

www.pragsoft.com Solutions to Exercises 291

// borrow an item from page for parent:
 page->CopyItems(parent, page->Used() - 1, idx, 1);
 // restore right:

parent->Right(idx) = right;
underflow = page->DeleteItem(page->Used() - 1);

}
}

// handle underflows

template <class Key, class Data>
void BTree<Key, Data>::Underflow (Page<Key, Data> *page,

Page<Key, Data> *child,
int idx, Bool &underflow)

{
Page<Key, Data> *left =

idx < page->Used() - 1 ? child : page->Left(idx);
Page<Key, Data> *right =

left == child ? page->Right(++idx) : child;

// copy contents of left, parent item, and right onto bufP:
int size = left->CopyItems(bufP, 0, 0, left->Used());
(*bufP)[size] = (*page)[idx];
bufP->Right(size++) = right->Left(0);
size += right->CopyItems(bufP, 0, size, right->Used());

if (size > 2 * order) {
 // distribute bufP items between left and right:

int half = size/2;
left->Used() = bufP->CopyItems(left, 0, 0, half);
right->Used() = bufP->CopyItems(right, half + 1, 0, size - half

- 1);
right->Left(0) = bufP->Right(half);
(*page)[idx] = (*bufP)[half];
page->Right(idx) = right;
underflow = false;

} else {
// merge, and free the right page:
left->Used() = bufP->CopyItems(left, 0, 0, size);
underflow = page->DeleteItem(idx);
delete right;

}
}

//---

template <class Key, class Data>
class BStar : public BTree<Key, Data> {
public:

BStar (const int order) : BTree<Key, Data>(order)
{}
virtual void Insert (Key key, Data data);

292 C++ Essentials Copyright © 2005 PragSoft

protected:
virtual Item<Key, Data>*InsertAux (Item<Key, Data> *item,

Page<Key, Data> *page);
virtual Item<Key, Data>*Overflow (Item<Key, Data> *item,

Page<Key, Data> *page,
Page<Key, Data> *child, int

idx);
};

// insert with overflow/underflow handling

template <class Key, class Data>
void BStar<Key, Data>::Insert (Key key, Data data)
{

Item<Key, Data> item(key, data);
Item<Key, Data> *overflow;
Page<Key, Data> *left, *right;
Bool dummy;

if (root == 0) { // empty tree
root = new Page<Key, Data>(2 * order);
root->InsertItem(item, 0);

} else if ((overflow = InsertAux(&item, root)) != 0) {
left = root; // root becomes a left child
root = new Page<Key, Data>(2 * order);
right = new Page<Key, Data>(2 * order);
root->InsertItem(*overflow, 0);
root->Left(0) = left; // the left-most child of root
root->Right(0) = right; // the right child of root
right->Left(0) = overflow->Subtree();
// right is underflown (size == 0):
Underflow(root, right, 0, dummy);

}
}

// inserts and deals with overflows

template <class Key, class Data>
Item<Key, Data>* BStar<Key, Data>::InsertAux (Item<Key, Data> *item,

Page<Key, Data> *page)
{

Page<Key, Data> *child;
int idx;

if (page->BinarySearch(item->KeyOf(), idx))
return 0; // already in tree

if ((child = page->Right(idx)) != 0) {
// child not a leaf:
if ((item = InsertAux(item, child)) != 0)

return Overflow(item, page, child, idx);
} else if (page->Used() < 2 * order) { // item fits in node

www.pragsoft.com Solutions to Exercises 293

page->InsertItem(*item, idx + 1);
} else { // node is full

int size = page->Used();
bufP->Used() = page->CopyItems(bufP, 0, 0, size);
bufP->InsertItem(*item, idx + 1);
bufP->CopyItems(page, 0, 0, size);
*item = (*bufP)[size];
return item;

}
return 0;

}

// handles underflows

template <class Key, class Data>
Item<Key, Data>* BStar<Key, Data>::Overflow (Item<Key, Data> *item,

Page<Key, Data> *page,
Page<Key, Data> *child, int idx)

{
 Page<Key, Data> *left =

idx < page->Used() - 1 ? child : page->Left(idx);
 Page<Key, Data> *right =

left == child ? page->Right(++idx) : child;

// copy left, overflown and parent items, and right into buf:
bufP->Used() = left->CopyItems(bufP, 0, 0, left->Used());
if (child == left) {

 bufP->InsertItem(*item, bufP->Used());
bufP->InsertItem((*page)[idx], bufP->Used());
bufP->Right(bufP->Used() - 1) = right->Left(0);
bufP->Used() +=

right->CopyItems(bufP, 0, bufP->Used(), right->Used());
} else {

 bufP->InsertItem((*page)[idx], bufP->Used());
bufP->Right(bufP->Used() - 1) = right->Left(0);
bufP->Used() +=

right->CopyItems(bufP, 0, bufP->Used(), right->Used());
 bufP->InsertItem(*item, bufP->Used());

}
if (bufP->Used() < 4 * order + 2) {

// distribute buf between left and right:
 int size = bufP->Used(), half;

left->Used() = bufP->CopyItems(left, 0, 0, half = size/2);
right->Used() = bufP->CopyItems(right, half + 1, 0, size - half

- 1);
right->Left(0) = bufP->Right(half);
(*page)[idx] = (*bufP)[half];
page->Right(idx) = right;
return 0;

} else {
// split int 3 pages:

294 C++ Essentials Copyright © 2005 PragSoft

Page<Key, Data> *newP = new Page<Key, Data>(2 * order);
 int mid1, mid2;

mid1 = left->Used() = bufP->CopyItems(left, 0, 0, (4 * order +
1) / 3);

mid2 = right->Used() = bufP->CopyItems(right, mid1 + 1, 0, 4 *
order / 3);

mid2 += mid1 + 1;
newP->Used() = bufP->CopyItems(newP, mid2 + 1, 0, (4 * order +

2) / 3);
right->Left(0) = bufP->Right(mid1);
bufP->Right(mid1) = right;
newP->Left(0) = bufP->Right(mid2);
bufP->Right(mid2) = newP;
(*page)[idx] = (*bufP)[mid2];
if (page->Used() < 2 * order) {

page->InsertItem((*bufP)[mid1], idx);
return 0;

} else {
*item = (*page)[page->Used() - 1];

 (*page)[page->Used() - 1] = (*bufP)[mid1];
return item;

}
}

}

10.1 enum PType {controlPack, dataPack, diagnosePack};
enum Bool {false, true};

class Packet {
public:

//...
 PType Type (void) {return dataPack;}

Bool Valid (void) {return true;}
};

class Connection {
public:

//...
Bool Active (void) {return true;}

};

class InactiveConn {};
class InvalidPack {};
class UnknownPack {};

void ReceivePacket (Packet *pack, Connection *c)
throw(InactiveConn, InvalidPack, UnknownPack)

{
if (!c->Active())

 throw InactiveConn();
 if (!pack->Valid())

www.pragsoft.com Solutions to Exercises 295

 throw InvalidPack();

switch (pack->Type()) {
case controlPack: //...

 break;
case dataPack: //...

 break;
case diagnosePack: //...

 break;
default: //...

 throw UnknownPack();
 }
}

10.2 #include <iostream.h>

class DimsDontMatch {};
class BadDims {};
class BadRow {};
class BadCol {};
class HeapExhausted {};

class Matrix {
public:

Matrix (const short rows, const short cols);
 Matrix (const Matrix&);

~Matrix (void) {delete elems;}
double& operator () (const short row, const short col);
Matrix& operator = (const Matrix&);

friend ostream& operator << (ostream&, Matrix&);
friend Matrix operator + (Matrix&, Matrix&);
friend Matrix operator - (Matrix&, Matrix&);
friend Matrix operator * (Matrix&, Matrix&);

const short Rows (void) {return rows;}
const short Cols (void) {return cols;}

private:
const short rows; // matrix rows
const short cols; // matrix columns
double *elems; // matrix elements

};

Matrix::Matrix (const short r, const short c) : rows(r), cols(c)
{
 if (rows <= 0 || cols <= 0)
 throw BadDims();

elems = new double[rows * cols];
 if (elems == 0)
 throw HeapExhausted();
}

296 C++ Essentials Copyright © 2005 PragSoft

Matrix::Matrix (const Matrix &m) : rows(m.rows), cols(m.cols)
{

int n = rows * cols;
 if (rows <= 0 || cols <= 0)
 throw BadDims();

elems = new double[n];
if (elems == 0)

throw HeapExhausted();
for (register i = 0; i < n; ++i) // copy elements

elems[i] = m.elems[i];
}

double& Matrix::operator () (const short row, const short col)
{

if (row <= 0 || row > rows)
 throw BadRow();
 if (col <= 0 || col > cols)
 throw BadCol();

return elems[(row - 1)*cols + (col - 1)];
}

Matrix& Matrix::operator = (const Matrix &m)
{

if (rows == m.rows && cols == m.cols) { // must match
int n = rows * cols;
for (register i = 0; i < n; ++i) // copy elements

elems[i] = m.elems[i];
} else

 throw DimsDontMatch();
return *this;

}

ostream& operator << (ostream &os, Matrix &m)
{

for (register r = 1; r <= m.rows; ++r) {
for (int c = 1; c <= m.cols; ++c)

os << m(r,c) << '\t';
os << '\n';

}
return os;

}

Matrix operator + (Matrix &p, Matrix &q)
{

if (p.rows != q.rows || p.cols != q.cols)
 throw DimsDontMatch();

Matrix m(p.rows, p.cols);
if (p.rows == q.rows && p.cols == q.cols)

for (register r = 1; r <= p.rows; ++r)
for (register c = 1; c <= p.cols; ++c)

m(r,c) = p(r,c) + q(r,c);

www.pragsoft.com Solutions to Exercises 297

return m;
}

Matrix operator - (Matrix &p, Matrix &q)
{

if (p.rows != q.rows || p.cols != q.cols)
 throw DimsDontMatch();

Matrix m(p.rows, p.cols);
if (p.rows == q.rows && p.cols == q.cols)

for (register r = 1; r <= p.rows; ++r)
for (register c = 1; c <= p.cols; ++c)

m(r,c) = p(r,c) - q(r,c);
return m;

}

Matrix operator * (Matrix &p, Matrix &q)
{

if (p.cols != q.rows)
 throw DimsDontMatch();

Matrix m(p.rows, q.cols);
if (p.cols == q.rows)

for (register r = 1; r <= p.rows; ++r)
for (register c = 1; c <= q.cols; ++c) {

m(r,c) = 0.0;
for (register i = 1; i <= p.cols; ++i)

m(r,c) += p(r,c) * q(r,c);
}

return m;
}

