C++ Essentlals

Sharam Hekmat

PragSoft Corporation
www.pragsoft.com

Contents

Contents
Preface

1. Preliminaries
A Simple C++ Program
Compiling a Simple C++ Program
How C++ Compilation Works
Variables
Smple Input/Output
Comments
Memory
Integer Numbers
Rea Numbers
Characters
Strings
Names
Exercises

2. Expressions
Arithmetic Operators
Relationd Operators
Logicd Operators
Bitwise Operators
Increment/Decrement Operators
Assgnment Operator
Conditional Operator
Comma Operator
The szeof Operator
Operator Precedence
Smple Type Converson
Exercises

oOo~NOapr~,owDNDNE X <

PR R R R R
OO0, WN PP O

NDNNDNDDNDNNNDNDNEREEPRE
OO ~NOOOUILDS, WNE O OOWw-N

Www. pragsoft.com

Contents

3. Statements 30

Simple and Compound Statements 31
Theif Statement 32
The switch Statement 34
The while Statement 36
The do Statement 37
The for Statement 38
The continue Statement 40
The bresk Statement 41
The goto Statement 42
The return Statement 43
Exercises 44
4. Functions 45
A Smple Function 46
Parameters and Arguments 48
Globa and Loca Scope 49
Scope Operator 50
Auto Variables 51
Regigter Variables 52
Stetic Variables and Functions 53
Extern Variables and Functions 54
Symbolic Congtants 55
Enumerations 56
Runtime Stack o7
Inline Functions 58
Recursion 59
Default Arguments 60
Variable Number of Arguments 61
Command Line Arguments 63
Exercises 64
5. Arrays, Pointers, and References 65
Arrays 66
Multidimensond Arrays 68
Pointers 70
Dynamic Memory 71
Pointer Arithmetic 73
Function Pointers 75
References 77
Typedefs 79
Exercises 80

Vi C++ Essentials Copyright © 2005 PragSoft

6. Classes 82

A SmpleClass 83
Inline Member Functions 85
Example: A Set Class 86
Constructors 90
Destructors 92
Friends 93
Default Arguments 95
Implicit Member Argument 96
Scope Operator 97
Member Initidization List 98
Congtant Members 99
Static Members 101
Member Pointers 102
References Members 104
Class Object Members 105
Object Arrays 106
Class Scope 108
Structures and Unions 110
Bit Fdds 112
Exercises 113
7. Overloading 115
Function Overloading 116
Operator Overloading 117
Example: Set Operators 119
Type Converson 121
Example Binary Number Class 124
Overloading << for Output 127
Overloading >> for Input 128
Overloading [] 129
Overloading () 131
Memberwise Initidization 133
Memberwise Assgnment 135
Overloading new and delete 136
Overloading ->, *, and & 138
Overloading ++ and -- 142
Exercises 143
8. Derived Classes 145
Anilludrative Class 146
A Simple Derived Class 150

www. pragsoft.com Contents Vii

Class Hierarchy Notation 152

Constructors and Destructors 153
Protected Class Members 154
Private, Public, and Protected Base Classes 155
Virtud Functions 156
Multiple Inheritance 158
Ambiguity 160
Type Converson 161
Inheritance and Class Object Members 162
Virtual Base Classes 165
Overloaded Operators 167
Exercises 168
9. Templates 170
Function Template Definition 171
Function Template Ingtantiation 172
Example: Binary Search 174
Class Template Definition 176
Class Template Ingtantiation 177
Nontype Parameters 178
Class Template Specidization 179
Class Template Members 180
Class Template Friends 181
Example Doubly-linked Lists 182
Derived Class Templates 186
Exercises 187
10. Exception Handling 188
Flow Control 189
The Throw Clause 190
The Try Block and Catch Clauses 192
Function Throw Ligs 194
Exercises 195
11. ThelO Library 196
The Role of stresmbuf 198
Stream Output with ostream 199
Stream Input with istream 201
Usng theios Class 204
Stream Manipulators 209
File 10O with fereams 210
Array 10 with stretreams 212
Example: Program Annotation 214

viii C++ Essentials Copyright © 2005 PragSoft

Exercises 217

12. The Prepr ocessor 218
Preprocessor Directives 219
Macro Definition 220
Quote and Concatenation Operators 222
FleIncluson 223
Conditiona Compilation 224
Other Directives 226
Predefined Identifiers 227
Exercises 228
Solutions to Exercises 230
www. pragsoft.com Contents iX

Preface

Since its introduction less than a decade ago, C++ has experienced growing
acceptance as a practical object-oriented programming language suitable for
teaching, research, and commercid software development. The language has aso
rapidly evolved during this period and acquired a number of new festures (eg.,
templates and exception handling) which have added to its richness.

This book serves as an introduction to the C++ language. It teaches how to
program in C++ and how to properly use its features. It does not attempt to teach
object-oriented design to any depth, which | believe is best covered in abook inits
own right.

In designing this book, | have gtrived to achieve three gods. Firdt, to produce
aconcise introductory text, free from unnecessary verbosity, so that beginners can
develop a good understanding of the language in a short period of time. Second, |
have tried to combine a tutorial style (based on explanation of concepts through
examples) with a reference style (based on a flat structure). As a result, each
chapter conssts of alist of relatively short sections (mostly one or two pages), with
no further subdivison. This, | hope, further smplifies the reader’s task. Findly, |
have conscioudy avoided trying to present an absolutely complete description of
C++. While no important topic has been omitted, descriptions of some of the minor
idiosyncrases have been avoided for the ske of daity and to avoid
overwhelming beginners with too much information. Experience suggests that any
amal knowledge gaps left as a result, will be easly filled over time through sdif-
discovery.

Intended Audience

This book introduces C++ as an object-oriented programming language. No
previous knowledge of C or any other programming language is assumed. Readers

X C++ Essentials Copyright © 2005 PragSoft

who have aready been exposed to a high-level programming language (such as C
or Pascd) will be able to skip over some of the earlier materid in this book.

Although the book is primarily designed for use in undergraduate computer
science courses, it will be equally useful to professond programmers and hobbyists
who intend to learn the language on their own. The entire book can be easly
covered in 10-15 lectures, making it suitable for a one-term or one-semester
course. It can aso be used as the basis of an intensve 4-5 day industrid training
course.

Structure of the Book

The book is divided into 12 chapters. Each chapter has a flat structure, consisting
of an unnumbered sequence of sections, most of which are limited to one or two
pages. The am is to present each new topic in a confined pace so that it can be
quickly grasped. Each chapter ends with a list of exercises. Answers to dl of the
exercises are provided in an appendix. Readers are encouraged to attempt as many
of the exercises as feasble and to compare their solutions againgt the ones
provided.

For the convenience of readers, the sample programs presented in this book
(including the solutions to the exercises) and provided in dectronic form.

WWW. pr agsoft.com Contents Xi

1. Preliminaries

This chapter introduces the basic dements of a C++ program. We will use smple
examples to show the structure of C++ programs and the way they are compiled.
Elementary concepts such as congtants, variables, and their storage in memory will
aso be discussed.

The following is a cursory description of the concept of programming for the
benefit of those who are new to the subject.

Programming

A digitad computer is a ussful tool for solving a great variety of problems. A
solution to a problem is called an algorithm; it describes the sequence of steps to
be performed for the problem to be solved. A smple example of a problem and an
agorithm for it would be:

Problem: Sort a list of names in ascending lexicographic order.

Algorithm: Call the given list listl; create an empty list, list2, to hold the sorted list.
Repeatedly find the ‘smallest’ name in listl, remove it from listl, and
make it the next entry of list2, until listl is empty.

An dgorithm is expressed in abdract terms. To be intdligible to a computer, it
needs to be expressed in a language understood by it. The only language redlly
understood by a computer is its own machine language. Programs expressed in
the machine language are said to be executable. A program written in any other
language needs to be firg trandated to the machine language before it can be
executed.

A machine language is far too cryptic to be suitable for the direct use of
programmers. A further abdtraction of this language is the assembly language
which provides mnemonic names for the ingtructions and a more intelligible notation
for the data. An assembly language program is trandated to machine language by a
trandator called an assembler.

Even assembly languages are difficult to work with. High-level languages such
as C++ provide a much more convenient notation for implementing dgorithms.
They liberate programmers from having to think in very low-leve terms, and help
them to focus on the dgorithm ingtead. A program written in a high-level language
is trandated to assembly language by atrandator called a compiler. The assembly
code produced by the compiler is then assembled to produce an executable

program.

www. pragsoft.com Chapter 1: Preliminaries 1

A Simple C++ Program

Listing 1.1
1

abwnN

Annotation

Ligting 1.1 shows our firs C++ program, which when run, smply outputs the
message Hel | o Vr | d.

#i ncl ude <i ostream h>

int main (void)

{
}

cout << "Hello World\n";

This line uses the preprocessor directive #i ncl ude to include the contents
of the header file i ostream h in the program. | ostream h is a standard
C++ header file and contains definitions for input and outpt.

This line defines a function cdled nmai n. A function may have zero or more
parameter s; these dways appear after the function name, between a pair of
brackets. The word voi d appearing between the brackets indicates that mai n
has no parameters. A function may adso have a return type; this dways
appears before the function name. The return type for mainisint (i.e, an
integer number). All C++ programs must have exactly one mai n function.
Program execution aways begins from nai n.

This brace marks the beginning of the body of nmai n.

This line is a statement. A dtatement is a computation step which may
produce a vaue. The end of a statement is aways marked with a semicolon
(;). This statement causes the string "Hel | o Worl d\n" to be sent to the
cout output stream. A dring is any sequence of characters enclosed in
double-quotes. The lagt character in this string { n) is a newline character
which is gmilar to a carriage return on a type writer. A dream is an object
which performs input or output. Gout is the standard output stream in C++
(standard output usudly means your computer monitor screen). The symbol
<<isan output operator which takes an output stream as its left operand and
an expression as its right operand, and causes the value of the latter to be
sent to the former. In this case, the effect is that the string "Hel 1 o Wr | d\ n"
issent to cout , causing it to be printed on the computer monitor screen.

This brace marks the end of the body of nai n. |

C++ Essentials Copyright © 2005 PragSoft

Compiling a Simple C++ Program

Dialog 1.1
1

2
3
4

Annotation

Dialog 1.2
1

2
3
4

Didlog 1.1 shows how the program in Ligting 1.1 is compiled and run in a typica
UNIX environment. User input appears in bol d and system response in pl ai n.
The UNIX command line prompt appears as adollar symboal ($).

$ CC hello.cc
$ a. out
Hello VWrld

$

1 Thecommand for invoking the AT& T C++ trandator in a UNIX environment
isQC. The argument to this command (hel | o. cc) is the name of the file which
contains the program. As a convention, the file name shouldendin . ¢, . C or
. cc. (Thisending may be different in other systems))

2 The result of compilation is an executable file which is by default named
a. out . To run the program, we just use a. out as acommand.

3 Thisisthe output produced by the program.

4 The return of the system prompt indicates that the program has completed its
execution.

The GC command accepts a variety of useful options. An option appears as -
nare, where nane is the name of the option (usualy a sngle letter). Some options
take arguments. For example, the output option (- o) dlows you to specify a name
for the executable file produced by the compiler instead of a. out . Didog 1.Error!
Bookmark not defined. illudrates the use of this option by specifying hel | o as
the name of the executablefile,

$ CChello.cc -0 hello
$ hello

Hello VWrld

$

Although the actua command may be different depending on the make of the
compiler, a smilar compilation procedure is used under MS-DOS. Windows-
basad C++ compilers offer a user-friendly environment where compilation is as
smple as choosng a menu command. The naming convention under MS-DOS and
Windows istha C++ source file names should end in . cpp. O

www. pragsoft.com Chapter 1: Preliminaries 3

How C++ Compilation Works

Compiling a C++ program involves a number of steps (most of which ae
trangparent to the user):

First, the C++ preprocessor goes over the program text and carries out the
ingructions specified by the preprocessor directives (e.g., #i ncl ude). The
result is a modified program text which no longer contains any directives.
(Chapter 12 describes the preprocessor in detail.)

Then, the C++ compiler trandates the program code. The compiler may be a
true C++ compiler which generates native (assembly or machine) code, or just
atrandator which trandates the code into C. In the latter case, the resulting C
code is then passed through a C compiler to produce native object code. In
ether case, the outcome may be incomplete due to the program referring to
library routines which are not defined as a part of the program. For example,
Liding 1.1 refers to the << operator which is actudly defined in a separate 10

library.
Findly, the linker completes the object code by linking it with the object code

of any library modules that the program may have referred to. The find result
isan executablefile.

Figure 1.1 illustrates the above steps for both a C++ trandator and a C++ native
compiler. In practice dl these steps are usudly invoked by a single command (e.g.,
QC) and the user will not even see the intermediate files generated.

Figure 1.1 C++

Compilation

C++

p C++ g J ©
rogram —»1 Code
g TRANSLATOR COMPILER

C++ C++ Object
Program NATIVE P Code
COMPILER

Execut-
LINKER —» able

4 C++

Essentials Copyright © 2005 PragSoft

Variables

A vaiable is a symbolic name for a memory location in which data can be stored
and subsequently recalled. Variables are used for holding data vaues so that they
can be utilized in various computations in a program. All variadbles have two
important attributes:
A type which is established when the varidble is defined (e.g., integer, red,
character). Once defined, the type of a C++ variable cannot be changed.

A value which can be changed by assgning a new vaue to the varidble. The
kind of vaues a varigble can assume depends on its type. For example, an
integer variable can only take integer values (e.g., 2, 100, -12).

Liging 1.2 illugtrates the uses of some smple variable.

Listing 1.2
1 | #i ncl ude <i ostream h>

int nain (void)
{
i nt wor kDays;
f1 oat wor kHour s, payRat e, weekl yPay;

abwmnN

6 wor kDays = 5;

7 wor kHours = 7. 5;

8 payRate = 38. 55;

9 weekl yPay = workDays * workHours * payRate;
10 cout << "\eekly Pay = ";

11 cout << weekl yPay;

12 cout << '\n';

13

Annotation
4 This line defines an int (integer) variable cdled wor kDays, which will
represent the number of working daysin aweek. As agenerd rule, avariable
is defined by specifying its type firgt, followed by the varigble name, followed
by asemicolon.

5 Thislinedefinesthreef | oat (red) variables which, respectively, represent the
work hours per day, the hourly pay rate, and the weekly pay. Asillustrated by
this line, multiple varidbles of the same type can be defined & once by
separating them with commeas.

6 Thislineisan assgnment statement. It assigns the value 5 to the varidble
wor kDays. Therefore, after this statement is executed, wor kDays denotes the
vaueb.

7 Thislineassgnsthevdue7. 5 to the variable wor kHour s.

www. pragsoft.com Chapter 1: Preliminaries 5

8 Thislineassgnsthevaue 38. 55 to the varidble payRat e.

9 Thisline cadculates the weekly pay as the product of wor kDays, wor kHour s,
and payRat e (* is the multiplication operator). The resulting vaue is stored in
weekl yPay.

10-12 Theselinesoutput three itemsin sequence: the string " ekl y Pay = ",
the vaue of the variable weekl yPay, and a newline character.

When run, the program will produce the following outpt:

Veekly Pay = 1445. 625

When a varigble is defined, its vaue is undefined until it is actudly assgned
one. For example, weekl yPay has an undefined vaue (i.e., whatever happens to
be in the memory location which the varidble denotes at the time) until line 9 is
executed. The assgning of a vaue to a vaiadle for the fird time is cdled
initialization. It is important to ensure that a variable is initidized before it is used
In any computation.

It is possble to define a variable and initidize it a the same time. This is
considered a good programming practice, because it pre-empts the possibility of
using the variable prior to it being initidized. Liging 1.3 is a revised version of
Liging 1.2 which uses this technique. For dl intents and purposes, the two
programs are equivaent.

Listing 1.3
1 | #incl ude <i ostream h>
2 |int main (void)
311
4 i nt wor kDays = 5;
5 f1 oat wor kHours = 7. 5;
6 f1 oat payRate = 38. 55;
7 f1 oat weekl yPay = wor kDays * workHours * payRate;
8 cout << "Veekly Pay =";
9 cout << weekl yPay;
10 cout << '\n';
11 |}
O
6 C++ Essentials Copyright © 2005 PragSoft

Simple Input/Output

Listing 1.4
1

O~ WN

o~

9
10
11
12
13

Annotation

The most common way in which a program communicates with the outsde world is
through smple, character-oriented Input/Output (10) operations. C++ provides
two useful operators for this purpose: >> for input and << for output. We have
aready seen examples of output using <<. Ligting 1.4 dso illugtrates the use of >>
for input.

#i ncl ude <i ostream h>

int nain (void)
{
i nt wor kDays = 5;
f1 oat wor kHours = 7.5;
f1 oat payRat e, weekl yPay;

cout << "Wiat is the hourly pay rate? "
cin >> payRat e;

weekl yPay = wor kDays * workHours * payRate;
cout << "Veekly Pay =";

cout << weekl yPay;

cout << '\n';

7 Thisline outputs the prompt What is the hourly pay rate? to seek user
input.

8 Thislinereadsthe input vaue typed by the user and copiesit to payRat e. The
input operator >> takes an input stream as its left operand (ci n is the
gandard C++ input stream which corresponds to data entered via the
keyboard) and a variable (to which the input data is copied) as its right
operand.

9-13 Therest of the program is as before.

When run, the program will produce the following output (user input appears in
bol d):

Wiat is the hourly pay rate? 33.55
Veekly Pay = 1258.125

Both << and >> return ther left operand as ther result, enabling multiple input
or multiple output operations to be combined into one satement. Thisis illustrated
by Liging 1.5 which now dlows the input of both the daily work hours and the
hourly pay rate.

www. pragsoft.com Chapter 1: Preliminaries 7

Listing 1.5
1

abrbwnN

~N o

Annotation

#i ncl ude <i ostream h>
int nain (void)
{
int wor kDays = 5;
fl oat wor kHour s, payRate, weekl yPay;
cout << "Wiat are the work hours and the hourly pay rate? "
cin >> wor kHours >> payRat €;
weekl yPay = wor kDays * workHours * payRate;
cout << "Wekly Pay = " << weeklyPay << '\n';
}

7 This line reads two input vaues typed by the user and copies them to
wor kHour s and payRat e, respectively. The two vaues should be separated
by white space (i.e., one or more space or tab characters). This statement is
equivaent to:

(cin >> workHours) >> payRate;
Because theresult of >> isits left operand, (ci n >> wor kHour s) evauates
to ci n which is then used asthe left operand of the next >> operator.

9 This line is the result of combining lines 10-12 from Liding 1.4. It outputs

"Wekly Pay = ", followed by the vadue of weekl yPay, followed by a
newline character. This Satement is equivaent to:

((cout << "Wekly Pay = ") << weekl yPay) << '\n';
Because theresult of << isitsleft operand, (cout << "\Wekly Pay = ")

evaluates to cout which is then used as the left operand of the next <<
operator, etc.

When run, the program will produce the following outpt:

Wiat are the work hours and the hourly pay rate? 7.5 33.55
Wekly Pay = 1258. 125

C++ Essentials Copyright © 2005 PragSoft

Comments

A comment is a piece of descriptive text which explains some aspect of a program.
Program comments are totaly ignored by the compiler and are only intended for
human readers. C++ provides two types of comment deimiters:

Anything after // (until the end of the line on which it gppears) is conddered a
comment.
Anything enclosed by the pair / * and */ is considered a comment.

Ligting 1.6 illustrates the use of both forms.

Listing 1.6
1 | #incl ude <i ostream h>
2| /* This programcal cul ates the weekly gross pay for a worker,
3 based on the total nunber of hours worked and the hourly pay
4 rate. */
5(int nain (void)
61
7 i nt wor kDays = 5; /1 Nunber of work days per week
8 f1 oat wor kHours = 7.5; /1 Nunber of work hours per day
9 f1 oat payRate = 33. 50; /l Hourly pay rate
10 fl oat weekl yPay; /1 Qoss weekly pay
11 weekl yPay = wor kDays * workHours * payRate;
12 cout << "Veekly Pay =" << weeklyPay << '\n';
13 |}

Comments should be used to enhance (not to hinder) the readability of a
program. The following two points, in particular, should be noted:

A comment should be easier to read and understand than the code which it
tries to explain. A confusing or unnecessarily-complex comment is worse than
no comment & dl.

Over-use of comments can lead to even less readability. A program which
contains SO much comment that you can hardly see the code can by no means
be considered readable.

Use of descriptive names for \variables and other entities in a program, and
proper indentation of the code can reduce the need for using comments.

The best guiddine for how to use commentsisto smply gpply common sense.

www. pragsoft.com Chapter 1: Preliminaries 9

Memory

Figure 1.2

Figure 1.3

A computer provides a Random Access Memory (RAM) for storing executable
program code as well as the data the program manipulates. This memory can be
thought of as a contiguous sequence of bits, each of which is cgpable of storing a
binary digit (0 or 1). Typicdly, the memory is aso divided into groups of 8
consecutive hits (called bytes). The bytes are sequentidly addressed. Therefore
each byte can be uniqudly identified by its addr ess (see Figure 1.2).

Bits and bytes in memory.
Byte Address

1211 1212 1213 1214 1215 1216 1217
Byte Byte | Byte / | Byte I\ Byte Byte Byte ... Memory

1{1{0]|1]0]|0]|0]1

t

Bit

The C++ compiler generates executable code which maps data entities to
memory locations. For example, the variable definition

int salary = 65000;

causes the compiler to dlocate a few bytes to represent sal ary. The exact
number of bytes dlocated and the method used for the binary representation of the
integer depends on the specific C++ implementation, but let us say two bytes
encoded as a 2's complement integer. The compiler uses the address of the first
byte & which sal ary is dlocated to refer to it. The above assgnment causes the
vaue 65000 to be stored as a 2's complement integer in the two bytes dlocated
(see Figure 1.3).

Representation of an integer in memory.
1211 1212 1213 1214 1215 1216 1217
.. | Byte | Byte | Byte [10110011]10120012] Byte | Byte | ... Memory
L sal ary |
(a two-byte integer whose address is 1214)

While the exact binary representation of a data item is rardly of interest to a
programmer, the generd organization of memory and use of addresses for referring
to dataitems (as we will see later) is very important.

10

C++ Essentials Copyright © 2005 PragSoft

Integer Numbers

Aninteger variable may be defined to be of typeshort, i nt, or | ong. The only
difference isthat an i nt uses more or at least the same number of bytes as a
short, and al ong uses more or &t least the same number of bytesasan int. For
example, on the author’'s PC, a short uses 2 bytes, an i nt aso 2 bytes, and a
| ong 4 bytes.

short age = 20;
i nt sal ary = 65000;
| ong price = 4500000;

By default, an integer variable is assumed to be sgned (i.e,, have a sgned
representation so that it can assume positive as well as negative vaues). However,
an integer can be defined to be unggned by using the keyword unsi gned in its
definition. The keyword si gned isaso alowed but is redundant.

unsi gned short age = 20;
unsi gned i nt sal ary = 65000;
unsigned long price = 4500000;

A literal integer (e.g., 1984) is aways assumed to be of type i nt , unless it
hasan L or | suffix, in which caseitistrested asal ong. Also, aliterd integer can
be specified to be unsgned using the suffix Uor u. For example:

1984L 1984l 1984U 1984u 1984LU 1984ul

Literal integers can be expressed in decimd, octd, and hexadecima notations.
The decimd notation is the one we have been usng so far. An integer istaken to be
octd if it is preceded by a zero (0), and hexadecimd if it is preceded by a Ox or
OX. For example:

92 /1 deci nal
0134 /1 equival ent octal
0x5C /1 equival ent hexadeci nmal

Octd numbers use the base 8, and can therefore only use the digits 0-7.
Hexadecima numbers use the base 16, and therefore use the letter A- F (or a-f) to
represent, respectively, 10- 15. Octa and hexadecima numbers are calculated as
follows

0134 =1 x&F+3x8 +4xP=64+24+4=92
Ox5C =5x 161 +12x 169=80+12=92

www. pragsoft.com Chapter 1: Preliminaries 11

Real Numbers

A real variable may be defined to be of type f1 oat or doubl e. The latter uses
more bytes and therefore offers a greater range and accuracy for representing red
numbers. For example, on the author's PC, a fl oat uses 4 and a doubl e uses 8
bytes.

fl oat interestRate = 0. 06;
double pi = 3.141592654;

A literal real (e.g., 0. 06) is dways assumed to be of type doubl e, unlessit has
anFor f auffix, inwhich caseitistrested asafl oat, or an L or | auffix, in which
caseitistrested asal ong doubl e. The latter uses more bytes than a doubl e for
better accuracy (e.g., 10 bytes on the author’s PC). For example:

0.06F 0. O6f 3. 141592654L 3. 141592654l

In addition to the decima notation used 0 far, literd reds may aso be
expressed in scientific notation. For example, 0.002164 may be written in the
scientific notetion as

2. 164E-3 or 2. 164e-3

The letter E (or e) stands for exponent. The scientific notation is interpreted as
folows

2.164E-3 =2164% 103

12

C++ Essentials Copyright © 2005 PragSoft

Characters

A character variable is defined to be of type char. A character variable
occupies a sngle byte which contains the code for the character. This code is a
numeric value and depends on the character coding system being used (i.e, is
meachine-dependent). The most common system is ASCIl (American Standard
Code for Information Interchange). For example, the character A has the ASCII
code 65, and the character a has the ASCII code 97.

char ch ="A;

Like integers, a character variable may be specified to be sgned or unsigned.
By the default (on most syssems) char means si gned char . However, on some
sysems it may mean unsi gned char. A dgned character variable can hold
numeric vaues in the range -128 through 127. An unsgned character variable can
hold numeric vaues in the range O through 255. As a result, both are often used to
represent smdl integers in programs (and can be assgned numeric vaues like
integers):

si gned char of fset = -88;
unsi gned char row = 2, colum = 26;

A literal character is written by enclosng the character between a pair of
sngle quotes (eg., ' A'). Nonprintable characters are represented using escape
sequences. For example:

"\n' /1 new line

"\r' [/l carriage return
"\t /! horizontal tab
"\ V' /] vertical tab
"\b' /'l backspace

"\ f! /1 fornfeed

Single and double quotes and the backdash character can adso use the escape

notation:
AR /1 single quote (')
AR /1 doubl e quote (")
W\ /1 backsl ash (\)

Literad characters may dso be specified using their numeric code vaue. The
general escape sequence \ ooo (i.e, a backdash followed by up to three octal
digits) is used for this purpose. For example (assuming ASCII):

"\ 12 /1 newine (decimal code = 10)

"\ 11 /1 horizontal tab (decinal code = 9)
"\101" // 'A (decimal code = 65)

"\O' /1 nul'l (decinal code = 0)

www. pragsoft.com Chapter 1: Preliminaries 13

Strings

A gring is a consecutive sequence (i.e., array) of characters which are terminated
by a null character. A string variable is defined to be of type char* (i.e, a
pointer to character). A pointer is Smply the address of a memory location.

(Pointers will be discussed in Chepter 5). A dring varidble, therefore, smply
contains the address of where the first character of a string appears. For example,

congder the definition:

char *str = "HELLO';

Figure 1.4 illustrates how the sring variable str and the string "HELLO' might
appear in memory.

Figure 1.4 A string and a string variable in memory.

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
T Tue [T [wlelvvlolw] L
str A

A literal string iswritten by enclosing its characters between a pair of double
quotes (e.g., "HELLO'"). The compiler aways appends a null character to a literd
dring to mark its end. The characters of a string may be specified usng any of the
notations for gpecifying literal characters. For example:

"Narre\ t Addr ess\ t Tel ephone” /1 tab-separated words
"ASA | character 65: \101" /1 "A specified as ' 101

A long string may extend beyond a single line, in which case each of the
preceding lines should be terminated by a backdash. For example:

"Exanpl e to show \
the use of backsl ash for \
witing along string"

The backdash in this context means that the rest of the string is continued on the
next line. The above gring is equivaent to the sngle line String:

"Exanpl e to show the use of backslash for witing a |long string"

A common programming error results from confusing a single-character string
(eg., "A") with asingle character (e.g., ' A). These two are not equivdent. The
former conssts of two bytes (the character * A' followed by the character '\ 0'),
wheresas the latter congsts of asingle byte.

The shortest possible string is the null gring (") which smply congdts of the
null character. a

14

C++ Essentials Copyright © 2005 PragSoft

Names

Programming languages use names to refer to the various entities that make up a
program. We have aready seen examples of an important category of such names
(i.e, variable names). Other categories include: function names, type names, and
meacro names, which will be described later in this book.

Names are a programming convenience, which alow the programmer to
organize what would otherwise be quantities of plain data into a meaningful and
human-readable collection. As a result, no trace of a name is léft in the find
executable code generated by a compiler. For example, a t enper at ur e variadle
eventualy becomes a few bytes of memory which is referred to by the executable
code by its address, not its name.

C++ imposes the following rules for cregting vdid names (aso caled
identifiers). A name should consist of one or more characters, each of which may
be a letter (i.e, 'A'-'Z' and 'a-'Z), a digit (i.e., '0-'9’), or an underscore character
("), except that the first character may not be adigit. Upper and lower case letters
are distinct. For example:

sal ary /] valid identifier
sal ary2 /] valid identifier
2sal ary /1 invalid identifier (begins with a digit)
_salary /] valid identifier

Sal ary /1 valid but distinct fromsalary

C++ imposes no limit on the number of characters in an identifier. However,
most implementation do. But the limit is usudly so large thet it should not cause a
concern (e.g., 255 characters).

Certain words are reserved by C++ for specific purposes and may not be
used as identifiers. These are caled reserved words or keywords and are
summarized in Teble 1.1:

Table 1.1 C++ keywords.
asm continue | float new si gned try
aut o def aul t for oper at or si zeof t ypedef
br eak del ete friend private static uni on
case do goto pr ot ect ed struct unsi gned
catch doubl e i f public switch vi rtual
char el se inline regi ster tenplate | void
cl ass enum i nt return this vol atile
const extern | ong short t hr ow whi | e
O
www. pragsoft.com Chapter 1: Preliminaries 15

Exercises

11

1.2

1.3

14

Write a program which inputs a temperature reading expressed in Fahrenheit and

outputsits equivaent in Cesus, using the formula
5
°C==("F- 32
9()

Compile and run the program. Its behavior should resemble this:

Tenperature in Fahrenheit: 41

41 degrees Fahrenheit = 5 degrees Cel sius

Which of the following represent vdid variable definitions?

int n=-100;
unsigned int i =
signed int = 2.9;
long m= 2, p = 4

int 2k;

double x =2 * m

float y =y * 2

unsi gned double z = 0.0;
doubl e d = 0. 67F

float f = 0.52L;

si gned char = -1786

char ¢ ='$ + 2;

sign char h ='\111";

char *nane = "Peter Pan";

unsi gned char *num = "276811"

- 100;

Which of the following represent vaid identifiers?

identifier

seven_11

uni que

gr oss-i ncorre

gr oss$i nconme

2by2

def aul t

average wei ght _of a large pizza
vari abl e

obj ect . ori ent ed

Define variables to represent the following entities:

Age of aperson.

Income of an employee.

Number of wordsin adictionary.
A letter of the aphabet.

A greeting message.

16

C++ Essentials

Copyright © 2005 PragSoft

2. Expressions

This chapter introduces the built-in C++ operators for composing expressions. An
expression is any computation which yidds avaue.

When discussing expressions, we often use the term evaluation. For example,
we say that an expression evauates to a certain vaue. Usudly the find vaue isthe
only reason for evaluating the expresson. However, in some cases, the expresson
may aso produce side-effects. These are permanent changes in the program
date. In this sense, C++ expressons are different from mathematica expressons.

C++ provides operators for composing arithmetic, relationd, logica, bitwise,
and conditiona expressions. It dso provides operators which produce useful sde-
effects, such as assgnment, increment, and decrement. We will look at each
category of operators in turn. We will aso discuss the precedence rules which
govern the order of operator evaluation in a multi-operator expression.

www. pragsoft.com Chapter 2: Expressions 17

Arithmetic Operators

Table 2.2

C++ provides five basic arithmetic operators. These are summarized in Table 2.2

Arithmetic operators.

Operator Name Example
+ Addition 12 + 4.9 /1 gives 16.9
- Subtraction 3.98 - 4 /1 gives -0.02
* Multiplication 2* 3.4 /1l gives 6.8

/ Division 9/ 2.0 /1l gives 4.5

% Remainder 13 %3 /1l gives 1

Except for remainder @) dl other arithmetic operators can accept a mix of
integer and red operands. Generdly, if both operands are integers then the result
will be an integer. However, if one or both of the operands are reds then the result
will beared (or doubl e to be exact).

When both operands of the division operator (/) are integers then the division
is performed as an integer division and not the norma divison we are used to.
Integer divison aways results in an integer outcome (i.e, the result is dways
rounded down). For example:

9/ 2 /1l gives 4, not 4.5!
-9/ 2 /1l gives -5, not -4l

Unintended integer divisions are a common source of programming errors. To
obtain ared divison when both operands are integers, you should cast one of the
operandsto bered:

i nt cost = 100;
i nt vol ure = 80;
double wunitPrice = cost / (double) vol ure; /1 gives 1.25

The remainder operator (%) expects integers for both of its operands. It returns
the remainder of integer-dividing the operands. For example 13983 is calculated by
integer dividing 13 by 3 to give an outcome of 4 and aremainder of 1; the result is
therefore 1.

It is possible for the outcome of an arithmetic operation to be too large for
goring in a desgnated variable. This Stuation is cdled an over flow. The outcome
of an overflow is machine-dependent and therefore undefined. For example:

unsi gned char k =10 * 92; /1 overflow 920 > 255

It isillegd to divide a number by zero. This results in a run-time division-by-
zero falure which typicdly causes the program to terminate. O

18

C++ Essentials Copyright © 2005 PragSoft

Relational Operators

Table 2.3

C++ provides six relationa operators for comparing numeric quantities. These are
summarized in Table 2.3. Relationd operators evaluate to 1 (representing the true
outcome) or O (representing the fal se outcome).

Relational operators.

Operator Name Example
== Equality 5==5 /1l gives 1
= Inequality 51=5 /1l gives O
< Less Than 5<5.5 /1l gives 1
<= Less Than or Equal 5<=5 /1l gives 1
> Greater Than 5>5.5 /1l gives 0
>= Greater Thanor Equal | 6.3 >= 5 /1l gives 1

Note that the <= and >= operators are only supported in the form shown. In
particular, =< and => are both invaid and do not mean anything.

The operands of a relational operator must evaluate to a number. Characters
are valid operands since they are represented by numeric vaues. For example
(assuming ASCII coding):

A <'F /1 gives 1 (is like 65 < 70)

The relationd operators should not be used for comparing strings, because this
will result in the gring addresses being compared, not the string contents. For
example, the expression

"HELLO' < "BYE'

causesthe address of " HELLO' to be compared to the address of " BYE'. As these
addresses are determined by the compiler (in a machine-dependent manner), the
outcome may be 0 or may be 1, and is therefore undefined.

C++ provides library functions (eg., strcnp) for the lexicogrgphic

comparison of gtring. These will be described later in the book.
a

www. pragsoft.com Chapter 2: Expressions 19

Logical Operators

C++ provides three logica operators for combining logical expresson. These are
summarized in Table 2.4. Like the relationa operators, logical operators evauate
tolorO.

Table 2.4 Logical operators.
Operator Name Example
! Logical Negation 1(5 ==5) /1l gives O
&& Logical And 5<6 &6 <6 /1l gives 1
| Logical Or 5<6]|] 6<5 /1l gives 1

Logicd negation is a unary operator, which negetes the logicd vaue of its
single operand. If its operand is nonzero it produce 0, and if it is O it produces 1.

Logicd and produces O if one or both of its operands evaluate to O.
Otherwise, it produces 1. Logica or produces O if both of its operands evaluate to
0. Otherwise, it produces 1.

Note that here we talk of zero and nonzero operands (not zero and 1). In
generd, any nonzero vaue can be used to represent the logica true, whereas only
zero represents the logical false. The following are, therefore, dl vaid logica
expressons.

120 /1l gives O
10 & 5 /1l gives 1
10 || 5.5 /1l gives 1
10 & O /1l gives O
C++ does not have a built-in boolean type. It is customary to use the type i nt
for this purpose instead. For example:
int sorted = 0; /] false
int balanced = 1, /1 true
O
20 C++ Essentials Copyright © 2005 PragSoft

Bitwise Operators

Table 2.5

Table 2.6

C++ provides Sx hitwise operators for manipulating the individua bits in an integer
quantity. These are summarized in Table 2.5.

Bitwise operators.

Operator Name Example
~ Bitwise Negation ~'\ 011 /1 gives '\ 366
& Bitwise And "\011' & '\027 /] gives '\001
| Bitwise Or "\o11" | '\027 /1 gives "\037
A Bitwise Exclusive Or "\ 011" ~ '\027 /1 gives '\036'
<< Bitwise Left Shift "\011' << 2 /1 gives '\044
>> Bitwise Right Shift "\011' >> 2 /1 gives '\002

Bitwise operators expect their operands to be integer quantities and treet them
as bit sequences. Bitwise negation is a unary operator which reverses the bitsin its
operands. Bitwise and compares the corresponding bits of its operands and
produces a 1 when both bits are 1, and O otherwise. Bitwise or compares the
corresponding bits of its operands and produces a 0 when both bits are 0, and 1
otherwise. Bitwise exclusive or compares the corresponding bits of its operands
and produces a 0 when both bits are 1 or both bitsare 0, and 1 otherwise,

Bitwise left shift operator and bitwise right shift operator both take a bit
sequence as their left operand and a podtive integer quantity n as ther right
operand. The former produces a bit sequence equa to the left operand but which
has been shifted n bit positions to the left. The latter produces a bit sequence equa
to the left operand but which has been shifted n bit positions to the right. Vacated
bits a either end are set to O.

Table 2.6 illustrates bit sequences for the sample operands and resultsin Table
2.5. To avoid worrying about the sgn hit (which is machine dependent), it is
common to declare a bit sequence as an unsigned quantity:

"\011';
"\027";

unsi gned char x
unsi gned char y

How the bits are calculated.

Example Octal Value Bit Sequence

X 011 O[O0 |0 |0 |2 |O |0 |1

y 027 O[O0 (0|21 |0 |21 |1 |1

~X 366 1]2)12 |1 (0|1 |1 |0
X &Yy 001 O[O0 [0 |0 |JO |O |[O |1
X|y 037 0|0 |0 (|21 |2 |1 (1|1
XNy 036 OO0 0|21 |1 |1 |10
X << 2 044 O[O0 (|1)0 |0 |1 |0]O
X >> 2 002 O[O0 |0)|JO |O|O |1]O

www. pragsoft.com Chapter 2: Expressions 21

Increment/Decrement Operators

The auto increment (++) and auto decrement (--) operators provide a
convenient way of, respectively, adding and subtracting 1 from a numeric variable.
These are summarized in Table 2.7. The examples assume the following variable
definition:

int k =5
Table 2.7 Increment and decrement operators.
Operator Name Example
++ Auto Increment (prefix) | ++k + 10 /1l gives 16
++ Auto Increment (postfix) | k++ + 10 /1 gives 15
Auto Decrement (prefix) | --k + 10 /1 gives 14
Auto Decrement (postfix) | k-- + 10 /1 gives 15
Both operators can be used in prefix and podtfix form. The difference is
sgnificant. When used in prefix form, the operator is first goplied and the outcome
is then used in the expresson. When used in the podtfix form, the expresson is
evauated first and then the operator gpplied.
Both operators may be applied to integer as well as red variables, athough in
practice red variadbles are rardy useful in thisform.
a
22 C++ Essentials Copyright © 2005 PragSoft

Assignment Operator

Table 2.8

The assgnment operator is used for storing a vaue a some memory location
(typically denoted by a variable). Its left operand should be an Ivalue, and its right
operand may be an arbitrary expression. The latter is evaluated and the outcome is
dtored in the location denoted by the lvalue.

Anlvalue (sanding for left value) is anything that denotes a memory location
in which avaue may be stored. The only kind of lvalue we have seen so far in this
book is a variable. Other kinds of Ivalues (based on pointers and references) will
be described later in this book.

The assgnment operator has a number of variants, obtained by combining it
with the arithmetic and bitwise operators. These are summarized in Table 2.8. The
examples assume that n isan integer varigble.

Assignment operators.

Operator Example Equivalent To
= n =25
+= n += 25 n=n+25
-= n-=25 n=n-25
*= n *= 25 n=n?=+25
/= n/=25 n=n/ 25
%= n % 25 n=n%25
&= n & OxF2F2 n =n & OxF2F2
| = n | = OxF2F2 n=n/| OxF2F2
A= n "= O0xF2F2 n=n" OxF2F2
<<= n <<= 4 n=n-<<4
>>= n >= 4 n=n>14

An assignment operation is itsdf an expresson whose vaue is the value sored
in its left operand. An assignment operation can therefore be used as the right
operand of another assgnment operation. Any number of assgnments can be

concatenated in this fashion to form one expresson. For example:

int m n, p;
n =p = 100; /] neans:
(n

n 100));
=p=100) +2; // neans: m

100)) + 2;

m
m

I n
—~~
©
I

Thisisequdly applicable to other forms of assgnment. For example:

m = 100;
m+=n = p = 10; /I means: m=m+ (n = p = 10);

www. pragsoft.com Chapter 2: Expressions 23

Conditional Operator

The conditiond operator takes three operands. It has the genera form:
operandl ? operand2 : operand3

First operandl is evauated, which is treated as a logica condition. If the result is
nonzero then operand2 is evaduaed and its vdue is the find result. Otherwise,
operand3 is evduated and its value isthe find result. For example:

int m=1 n=2;
int Mmn=(m<n?m: n); /1 mn receives 1

Note that of the second and the third operands of the conditiona operator
only oneis evauated. This may be sgnificant when one or both contain Sde-effects
(i.e., their evauation causes a change to the value of avariable). For example, in

int mn=(m<n?m+: ntt);

mis incremented because m++ is evauated but n is not incremented because n++
IS not evauated.

Because a conditiona operation is itsdf an expression, it may be used as an
operand of another conditiona operation, that is, conditional expressons may be
nested. For example:

int m=1 n=2 p =3
int mn=(m<n?(mMm<p?m: p)
s (n<p?n:p);

24

C++ Essentials Copyright © 2005 PragSoft

Comma Operator

Multiple expressons can be combined into one expresson usng the comma
operator. The comma operator takes two operands. It first evauates the left
operand and then the right operand, and returns the vaue of the latter as the find
outcome. For example:

int m n, mn;

int nmbount = 0, nCount = O;

/...

mn=(m<n ? mbount++, m: nCount++ n);

Herewhen mislessthan n, nCount ++ isevauated and the value of mis stored in

m n. Otherwise, nCount ++ isevauated and thevaue of n isstoredin mi n.
O

www. pragsoft.com Chapter 2: Expressions 25

The sizeof Operator

C++ provides a useful operator, si zeof , for cdculating the Sze of any data item
or type. It takes a single operand which may be a type name (e.g., int) or an
expression (e.g., 100) and returns the size of the specified entity in bytes. The
outcome is totally machine-dependent. Listing 2.7 illustrates the use of Szeof on the
built-in types we have encountered o far.

Listing 2.7

1 | #incl ude <i ostream h>

2 |int main (void)

311

4 cout << "char size =" << sizeof(char) << " bytes\n"

5 cout << "char* size =" << sizeof(char*) << " bytes\n";

6 cout << "short size =" << sizeof(short) << " bytes\n";

7 cout << "int size =" << sizeof(int) << " bytes\n";

8 cout << "long size =" << sizeof(long) << " bytes\n";

9 cout << "float size =" << sizeof(float) << " bytes\n";
10 cout << "doubl e size =" << sizeof (double) << " bytes\n";
11 cout << "1.55 size =" << sizeof(1.55) << " bytes\n";
12 cout << "1.55L size =" << sizeof (1.55L) << " bytes\n"
13 cout << "HELLO size =" << sizeof ("HELLO') << " bytes\n"
14 |}

When run, the program will produce the following output (on the author’s PC):

si ze
si ze
si ze
si ze
si ze
si ze
si ze
si ze
si ze
si ze

char
char*
short

i nt

| ong
fl oat
doubl e
1.55
1.55L
HELLO

byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es

CCoOR~ADNNNE

10 bytes

6 bytes

26 C++ Essentials

Copyright © 2005 PragSoft

Operator Precedence

The order in which operators are evauated in an expresson is sgnificant and is
determined by precedence rules. These rules divide the C++ operators into a
number of precedence levels (see Table 2.9). Operators in higher levels take
precedence over operatorsin lower levels.

Table 2.9 Operator precedence levels.
Level Operator Kind Order
Highest Dl Unary Both
() [1] ->) Binary | Leftto Right
— -

j- j-j- L & der:eevtve s! (Z)eOf Unary Right to Left
- >* L * Binary | Leftto Right
* / % | Binary | Leftto Right
+ - Binary | Leftto Right
<< >> Binary | Leftto Right
< <= > | >= Binary | Leftto Right
== | = Binary | Leftto Right
& Binary | Leftto Right
N Binary | Left to Right
| Binary | Leftto Right
&& Binary | Leftto Right
| | Binary | Leftto Right
? Ternary | Left to Right

= += * = N= &= <<= . .
o _ e | = >>= | Binary Right to Left
Lowest , Binary | Leftto Right

For example, in
a==b+c*d

c * disevduated firs because * has a higher precedence than + and ==. The
result is then added to b because + has a higher precedence than ==, and then ==
is evaluated. Precedence rules can be overridden using brackets. For example,
rewriting the above expresson as

a==(b+c) *d

causes + to be evaluated before *.
Operators with the same precedence levd are evauated in the order specified
by the last column of Table 2.9. For example, in

a=b+=c

the evaluation order isright to left, o firg b += c isevaduated, followed by a =
b. O

www. pragsoft.com Chapter 2: Expressions 27

Simple Type Conversion

A vauein any of the built-in types we have see o far can be converted (type-cast)
to any of the other types. For example:

(int) 3.14 /'l converts 3.14 to anint to give 3
(long) 3.14 /1 converts 3.14 to a long to give 3L
(doubl e) 2 /1 converts 2 to a double to give 2.0
(char) 122 /1 converts 122 to a char whose code is 122

(unsigned short) 3.14 // gives 3 as an unsi gned short

As shown by these examples, the built-in type identifiers can be used as type
operators. Type operators are unary (i.e., take one operand) and appear inside
brackets to the left of their operand. This is cdled explicit type conversion.
When the type name is just one word, an aternate notation may be used in which
the brackets appear around the operand:

int(3.14) /1 same as: (int) 3.14

In some cases, C++ aso performs implicit type conversion. This happens
when vaues of different types are mixed in an expression. For example:

double d = 1; /! dreceives 1.0
i nt i = 10.5; Il i receives 10
i =i +d; /!l means: i = int(double(i) + d)

Inthe last example, i + d involves mismatching types, so i is first converted to
double (promoted) and then added to d. The result is a doubl e which does not
match the type of i on the left Sde of the assgnment, o it is converted to i nt
(demoted) before being assigned toi .

The above rules represent some smple but common cases for type
converson. More complex cases will be examined later in the book after we have

discussed other data types and classes.
O

28

C++ Essentials Copyright © 2005 PragSoft

Exercises

25 Write expressions for the following:
Totest if anumber n iseven.
Totest if acharacter cisadigit.
Totest if acharacter cisaletter.
Todothetest: nisodd and postive or n iseven and negative.
To st the n-th bit of along integer f to 1.
To reset the n-th bit of along integer f to O.
To give the absolute vaue of a number n.
To give the number of charactersin a null-terminated string literd s.

2.6 Add extra brackets to the following expressons to explicitly show the order in
which the operators are evaluated:
(n<=p+qg&&n>p-q]|] n==0)
(++n * g-- / ++p - Q)
(n] p&g”p<<2+aq)
(p<qgq?n<p?qg*n-2:9g/ n+1:qg-n
2.7 Wha will be the vdue of each of the following variables fter itsinitidization:
double d =2 * int(3.14);
| ong k =3.14 - 3;
char c='a +2
char c='p +'A -'a,;
2.8 Write a program which inputs a positive integer n and outputs 2 raised to the
power of n.
29 Write a program which inputs three numbers and outputs the message Sort ed if

the numbers are in ascending order, and outputs Not sor t ed otherwise.
O

www. pragsoft.com Chapter 2: Expressions 29

Statements

This chapter introduces the various forms of C++ satements for composing
programs. Statements represent the lowest-level building blocks of a program.
Roughly spesking, each statement represents a computationd step which has a
certain side-effect. (A sde-effect can be thought of as a change in the program
date, such as the vaue of a vaiable changing because of an assgnment.)
Statements are useful because of the sde-effects they cause, the combination of
which enables the program to serve a specific purpose (e.g., sort alist of names).

A running program spends dl of its time executing statements. The order in
which statements are executed is cdled flow control (or control flow). This term
reflect the fact that the currently executing statement has the control of the CPU,
which when completed will be handed over flow) to another statement. Flow
contral in aprogram istypicaly sequentid, from one statement to the next, but may
be diverted to other paths by branch statements. How control is an important
congderation because it determines what is executed during a run and what is not,
therefore affecting the overal outcome of the program.

Like many other procedurd languages, C++ provides different forms of
datements for different purposes. Declaration statements are used for defining
variables. Assgnment-like statements are used for smple, algebraic computations.
Branching datements are used for specifying dternate paths of execution,
depending on the outcome of a logica condition. Loop statements are used for
specifying computations which need to be repeated until a certain logical condition
is satisfied. Flow control statements are used to divert the execution path to another
part of the program. We will discuss thesein turn.

30

C++ Essentials Copyright © 2005 PragSoft

Simple and Compound Statements

A smple datement is a computation terminated by a semicolon. Variable
definitions and semicolon-terminated expressions are examples:

int i; /] decl aration statenent
++ ; /! this has a side-effect
double d = 10.5; /1 decl aration statenent
d + 5; /1 usel ess st at enent!

The last example represents a useless statement, because it has no sde-effect (d is
added to 5 and the result is just discarded).
The amplest gatement is the null atement which conggts of just asemicolon:

/! null statenent

Although the null statement has no Sde-effect, as we will see later in the chapter, it
has some genuine uses.

Multiple statements can be combined into a compound statement by enclosing
them within braces. For example:

{int min, i =10, j = 20;
mn=(<j ?2i :j);
cout << nmin << '\n';

}

Compound statements are useful in two ways. (i) they dlow us to put multiple
gatements in places where otherwise only single statements are dlowed, and (ii)
they alow us to introduce a new scope in the program. A scope is a part of the
program text within which a variable remains defined. For example, the scope of
mn,i,andj inthe above example is from where they are defined till the closng
brace of the compound statement. Outsde the compound statement, these
variables are not defined.

Because a compound statement may contain variable definitions and defines a
scope for them, it isaso called a block. The scope of a C++ variable is limited to
the block immediatdy enclosing it. Blocks and scope rules will be described in
more detail when we discuss functions in the next chapter.

Www. pragsoft.com Chapter 3. Satements 31

The if Statement

It is sometimes desirable to make the execution of a statement dependent upon a
condition being satisfied. The i f Statement provides a way of expressng this, the
generd form of which is

i f (expression)
statement;

Firs expression is evaduated. If the outcome is nonzero then statement is
executed. Otherwise, nothing happens.

For example, when dividing two vaues, we may want to check that the
denominator is nonzero:

if (count !'= 0)
average = sum/ count;

To make multiple statements dependent on the same condition, we can use a
compound statement:

if (balance > 0) {
interest = balance * creditRate;
bal ance += interest;

}

A vaiant form of the if datement dlows us to specify two dterndive
satements. one which is executed if a condition is satisfied and one which is
executed if the condition is not satisfied. Thisis cdled the if-dse satement and has
the generd form:

i f (expression)
statement,;

el se
statement,;

First expression is evauated. If the outcome is nonzero then statement; is
executed. Otherwise, statement, is executed.
For example:

if (balance > 0) {
interest = bal ance * creditRate;
bal ance += interest;

} else {
interest = bal ance * debitRate;
bal ance += interest;

32 C++ Essentials Copyright © 2005 PragSoft

Given the smilarity between the two dternative parts, the whole statement can be
amplified to:

if (bal ance > 0)

interest = balance * creditRate;
el se

interest = bal ance * debitRate;
bal ance += interest;

Or amplified even further using a conditiona expresson:

interest = balance * (balance > 0 ? creditRate : debitRate);
bal ance += interest;

Or just:
bal ance += bal ance * (balance > 0 ? creditRate : debitRate);

If satements may be nested by having an if statement gppear insde another if
satement. For example:

if (callHour > 6) {
if (callbDuration <= 5)
charge = callDuration * tarrif1;
el se
charge =5 * tarrifl + (callDuration - 5) * tarrif2;
} else
charge = fl at Fee;

A frequently-used form of nested if atements involves the ese part conssting
of another if-else statement. For example:

if (ch>="'0 &% ch<="'9")
kind = digit;
el se {
if (ch>"A & ch<="'2Z)
ki nd = upperLetter;
el se {
if (ch>"a & ch<="2")
kind = | owerlLetter;
el se
kind = speci al ;

}

For improved readability, it is conventiona to format such cases asfollows:

if (ch>="'0 &% ch<="'9")
kind = digit;

elseif (cha>="'A & ch <='2Z)
kind = capital Letter;

elseif (ch>'a &&ch<="'2")
kind = snal | Letter;

www. pragsoft.com Chapter 3. Satements 33

el se
ki nd = speci al ;

34 C++ Essentials Copyright © 2005 PragSoft

The switch Statement

The swi t ch statement provides a way of choosing between a set of dternatives,
based on the value of an expresson. The generd form of the switch statement is.

swi t ch (expression) {
case constant;:
statements;

case constant,:
statements;

defaul t:
statements;

}

First expression (cdled the switch tag) is evauated, and the outcome is compared
to each of the numeric constants (caled case labels), in the order they appear,
until a maich is found. The statements following the matching case are then
executed. Note the plurd: each case may be followed by zero or more statements
(not just one gtatement). Execution continues until either a br eak Satement is
encountered or dl intervening statements until the end of the switch satement are
executed. Thefind def aul t caseis optiona and is exercised if none of the earlier
cases provide a match.

For example, suppose we have parsed a binary arithmetic operation into its
three components and stored these in variables operat or, operandl, and
oper and2. The following switch statement performs the operation and stored the
reslltinresul t.

switch (operator) {

case '+': result = operandl + operand2;
br eak;
case '-': result = operandl - operand2;
br eak;
case '*': result = operandl * operand2;
br eak;
case '/': result = operandl / operand2;
br eak;
defaul t: cout << "unknown operator: " << ch << '\n';
br eak;

}

As illugrated by this example, it is usudly necessary to include a bresk
statement at the end of each case. The bresk terminates the switch statement by
jumping to the very end of it. There are, however, dtuations in which it makes
sense to have a case without a bresk. For example, if we extend the above
satement to dso dlow x to be used as amulltiplication operator, we will have:

Www. pragsoft.com Chapter 3. Satements 35

switch (operator) {

case '+': result = operandl + operand2;
br eak;

case '-': result = operandl - operand2;
br eak;

case 'Xx':

case '*': result = operandl * operand2;
br eak;

case '/': result = operandl / operand2;
br eak;

defaul t: cout << "unknown operator: " << ch << '\n';
br eak;

}

Because case ' x' has no bresk statement (in fact no statement at al!), when this
case is satisfied, execution proceeds to the statements of the next case and the
multiplication is performed.

It should be obvious that any switch statement can dso be written as multiple
if-else statements. The above statement, for example, may be written as.

if (operator == '+")
result = operandl + operand2;
else if (operator == '-")
result = operandl - operand2;
else if (operator == 'x' || operator == '*")
result = operandl * operand2;
else if (operator == "'/")
result = operandl / operand2;
el se
cout << "unknown operator: " << ch << '\n';

However, the switch version is arguably neater in this case. In generd, preference
should be given to the switch verson when possible. The if-else agpproach should
be reserved for dStuation where a switch cannot do the job (eg., when the
conditions involved are not smple equality expressons, or when the case labels are
not numeric constants).

36 C++ Essentials Copyright © 2005 PragSoft

The while Statement

Table 3.10

The whi | e statement (dso cdled while loop) provides a way of repeating an
satement while a condition holds. It is one of the threeflavors of iteration in C++.
The generd form of the while Satement is:

whi | e (‘expression)
statement;

Firgt expression (caled the loop condition) is evauated. If the outcome is nonzero
then statement (caled the loop body) is executed and the whole process is
repeated. Otherwise, the loop is terminated.

For example, suppose we wish to caculate the sum of dl numbers from 1 to
some integer denoted by n. This can be expressed as.

i =1

sum= 0;

while (i <= n)
sum += i ++

For n setto 5, Table 3.10 provides a trace of the loop by listing the vaues of
the variables involved and the loop condition.

While loop trace.
Iteration i n i <= n |[sum+=|++
First 1 5 1 1
Second 2 5 1 3
Third 3 5 1 6
Fourth 4 5 1 10
Fifth 5 5 1 15
Sixth 6 5 0

It is not unusud for awhile loop to have an empty body (i.e., anull statement).
The following loop, for example, setsn to its greatest odd factor.

while (N %2 == 0&& n /= 2)

Here the loop condition provides dl the necessary computation, so there is no redl
need for a body. The loop condition not only tests thet n is even, it aso divides n
by two and ensures that the loop will terminate should n be zero.

www. pragsoft.com Chapter 3. Satements 37

The do Statement

The do statement (also caled do loop) is Smilar to the whi | e statement, except
that its body is executed first and then the loop condition is examined. The generd
form of the do Satement is:

do
statement;
whi | e (expression) ;

Firg statement is executed and then expression is evduated. If the outcome of the
latter is nonzero then the whole process is repeated. Otherwise, the loop is
terminated.

The do loop is less frequently used than the while loop. It is useful for
situations where we need the loop body to be executed at least once, regardless of
the loop condition. For example, suppose we wish to repestedly read a vaue and
print its square, and stop when the vaue is zero. This can be expressed as the

fallowing loop:

do {

cin >> n;

cout << n* n<<'\n';
} while (n!=0);

Unlike the while loop, the do loop is never used in Stuations where it would
have a null body. Although a do loop with a null body would be equivdent to a
amilar whileloop, the latter is aways preferred for its superior readability.

38

C++ Essentials Copyright © 2005 PragSoft

The for Statement

Thef or statement (so called for loop) is amilar to the whi | e statement, but has
two additiond components an expresson which is evauated only once before
everything else, and an expresson which is evauated once a the end of each
iteration. The generd form of the for Satement is

for (expression,; expression,; expressiong)
statement;

First expression; is evauated. Each time round the loop, expression, is
evaluated. If the outcome is nonzero then statement is executed and expression, is

evauated. Otherwise, the loop is terminated. The generd for loop is equivaent to
the following while loop:

expression;;

whi | e (expression,) {
statement;
expressiong;

}

The most common use of for loops is for Stuations where a vaiable is
incremented or decremented with every iteration of the loop. The following for
loop, for example, caculates the sum of al integersfrom 1 ton.

sum= 0;
for (i =1; i <=n; +H)
sum+= i;

This is preferred to the while-loop version we saw earlier. In this example, i is
usudly caled theloop variable.

C++ dlows the firgt expresson in afor loop to be a variable definition. In the
above loop, for example, i can be defined ingde the loop itsdf:

for (int i =1; i <=n; ++H)
sum+= i ;

Contrary to what may appear, the scopefor i is not the body of the loop, but the
loop itsdlf. Scope-wise, the above is equivaent to:

int i;
for (i =1; i <=n; +H)
sum+= i;

www. pragsoft.com Chapter 3. Satements 39

Any of the three expressions in a for loop may be empty. For example,
removing the firg and the third expresson gives us something identicd to a while
loop:

for (; i 1'=0;) /1l is equivalent to: while (i = 0)
sorret hi ng; /1l sorret hi ng;

Removing dl the expressons gives us an infinite loop. This loop's condition is
assumed to be always true:

for (;;) /1 infinite | oop
sonet hi ng;

For loops with multiple loop variables are not unusua. In such cases, the
comma operator is used to separate their expressions:

for (i =0, j =0; i +] <n; ++H, +4)
sonet hi ng;

Because loops are statements, they can gppear insde other loops. In other
words, loops can be nested. For example,

for (int i =1; i <=3; ++H)
for (int j =1; j <=3; +4)
cout << '(' <<i <<',' << << ")\n";

produces the product of the set {1,2,3} with itsdf, giving the outpuit:

40

C++ Essentials Copyright © 2005 PragSoft

The continue Statement

The cont i nue statement terminates the current iteration of a loop and instead
jumps to the next iteration. It gpplies to the loop immediately enclosing the continue
satement. It isan error to use the continue statement outside aloop.

In while and do loops, the next iteration commences from the loop condition.
In afor loop, the next iteration commences from the loop’s third expression. For
example, a loop which repeatedly reads in a number, processes it but ignores
negative numbers, and terminates when the number is zero, may be expressed as.

do {
cin >> num
if (num< 0) continue;
/1 process numhere. ..
} while (num!= 0);

Thisisequivdent to:
do {
cin >> num
if (num>=0) {
/|l process numhere...
}
} while (num!= 0);

A variant of thisloop which readsin anumber exactly n times (rather than until
the number is zero) may be expressed as.

for (i =0; i <n; +H) {
cin >> num
if (num< 0) continue; /] causes a junp to: ++

/] process numhere...

}

When the continue statement agppears indde nested loops, it applies to the
loop immediately enclosing it, and not to the outer loops. For example, in the
following set of nested loops, the continue applies to the for loop, and not the while

loop:
while (nore) {
for (i =0; i <n; ++H) {
cin >> num
if (num< 0) continue; /] causes a junp to: ++

/1l process numhere...

}
/letc. ..

www. pragsoft.com Chapter 3. Satements 41

The break Statement

A break gatement may appear indde a loop (while, do, or for) or a switch
datement. It causes a jJump out of these congtructs, and hence terminates them.
Like the continue statement, a bresk statement only applies to the loop or switch
immediately enclosng it. It is an error to use the bresk statement outside a loop or
aswitch.

For example, suppose we wish to read in a user password, but would like to
alow the user alimited number of atempts:

for (i =0; i <attenpts; ++H) {
cout << "M ease enter your password: "
ci n >> password;
if (Verify(password)) /1 check password for correctness
br eak; /! drop out of the |oop
cout << "Incorrect!\n";

}

Here we have assumed that there is a function called Verify which checks a
password and returnstrue if it is correct, and false otherwise.

Rewriting the loop without a bresk statement is always possble by usng an
additiond logica varidble (veri f i ed) and adding it to the loop condition:

verified = 0;
for (i =0; i <attenpts & !'verified; ++) {
cout << "M ease enter your password: "
cin >> password;
verified = Verify(password));
if ('verified)
cout << "Incorrect!\n";

}
The bregk version is arguably smpler and therefore preferred.

42 C++ Essentials Copyright © 2005 PragSoft

The goto Statement

The got o statement provides the lowest-leve of jumping. It has the generd form:
got o labe;

where labd is an identifier which marks the jump detination of goto. The labe

should be followed by a colon and gppear before a satement within the same
function as the goto Satement itsalf.

For example, the role of the bresk statement in the for loop in the previous
section can be emulated by a goto:

for (i =0, i <attenpts; ++) {
cout << "Pl ease enter your password: "
cin >> password;

if (Verify(password)) /1 check password for correctness
goto out; /1 drop out of the |oop
cout << "Incorrect!\n";

}

out :
/letc...

Because goto provides a free and ungtructured form of jumping (unlike bresk
and continue), it can be easly misused. Most programmers these days avoid using
it altogether in favor of clear programming. Neverthdess, goto does have some
legitimate (though rare) uses. Because of the potentia complexity of such cases,
furnishing of examplesis postponed to the later parts of the book.

www. pragsoft.com Chapter 3. Satements 43

The return Statement

Ther et ur n satement enables a function to return a vaue to its caler. It has the
generd form:

ret urn expression;

where expression denotes the vaue returned by the function. The type of this value
should match the return type of the function. For a function whose return type is
voi d, expression should be empty:

return;

The only function we have discussed o far is nai n, whose return type is
adwaysi nt . The return value of main is what the program returns to the operating
sysem when it completes its execution. Under UNIX, for example, it its
conventiond to return O from mai n when the program executes without errors.
Otherwise, anon-zero error code is returned. For example:

int nain (void)

{
cout << "Hello World\n";

return O;

}

When afunction has a non-void return vaue (as in the above example), failing
to return a vaue will result in a compiler warning. The actud return value will be
undefined in this case (i.e, it will be whatever vdue which happens to be in its
corresponding memory location &t the time).

44

C++ Essentials Copyright © 2005 PragSoft

Exercises

3.10

311

3.12

3.13

3.14

3.15

Write a program which inputs a person’s height (in centimeters) and weight (in
kilograms) and outputs one of the messages underwei ght, normal, or
over wei ght , usng the criteria:

Underweight: weight < height/2.5
Normd: height/2.5 <= weight <= height/2.3
Overweight: height/2.3 < weight

Asuming that n is 20, what will the following code fragment output when
executed?

if (n>=0)
if (n< 10
cout << "nis snall\n";
el se
cout << "n is negative\n";

Write a program which inputs a date in the format dd/ i yy and outputs it in the
format nont h dd, year. For example, 25/ 12/ 61 becomes:

Decenber 25, 1961

Write a program which inputs an integer vaue, checks that it is postive, and
outputs its factorid, usng the formulas

factorial(0) = 1
factorial(n) = n x factorial(n-1)

Write a program which inputs an octa number and outputs its decima equivaent.
The following example illustrates the expected behavior of the program:

Input an octal nunber: 214
Cctal (214) = Deci mal (532)

Write a program which produces a ample multiplication table of the following
format for integersintherange 1t0 9:

1x1=1
1x2=2
9x 9=281

www. pragsoft.com Chapter 3. Satements 45

4, Functions

This chapter describes user-defined functions as one of the main building blocks of
C++ programs. The other main building block — user-defined classes — will be
discussed in Chapter 6.

A function provides a convenient way of packaging a computationd recipe, so
that it can be used as often as required. A function definition consss of two
parts. interface and body. The interface of a function (dso cdled its prototype)
specifies how it may be used. It congsts of three entities:

Thefunction name. Thisis smply a unique identifier.

Thefunction parameters (aso caled its Sgnature). Thisis a st of zero or
more typed identifiers used for passng vaues to and from the function.

Thefunction return type. This specifies the type of vadue the function returns.
A function which returns nothing should have the return type voi d.

The body of a function contains the computationa steps (datements) that
comprise the function.

Using afunction involves ‘cdling’ it. A function call conssts of the function
name followed by the cal operator brackets ‘()’, indde which zero or more
comma-separated ar guments appear. The number of arguments should match the
number of function parameters. Each argument is an expression whose type should
meatch the type of the corresponding parameter in the function interface.

When a function cal is executed, the arguments are first evauated and ther
resulting vaues are assigned to the corresponding parameters. The function body is
then executed. Findly, the function return vaue (if any) is passed to the cdller.

Since acdl to afunction whose return type is non-voi d yields a return value,
the cdl is an expresson and may be used in other expressions. By contrast, a cdll
to afunction whose return typeisvoi d is a statement.

www. pragsoft.com Chapter 4: Functions 45

A Simple Function

Listing 4.8

1
2
3

~N o o1 b

Annotation

Listing 4.9

1

abwN

Ligting 4.8 shows the definition of a smple function which raises an integer to the
power of another, postive integer.

int Power (int base, unsigned int exponent)
{
int result = 1;
for (int i =0; i < exponent; ++)
result *= base;
return result;
}

1 This line defines the function interface. It garts with the return type of the
function (nt in this case). The function name appears next followed by its
parameter list. Power has two parameters (base and exponent) which are of
types int and unsigned int, respectivdy Note tha the syntax for
paamees is dmilar to the syntax for defining variables. type identifier
followed by the parameter name. However, it is not possble to follow atype
identifier with multiple comma-separated parameters:

int Power (int base, exponent) // Wong!

2 Thisbrace marks the beginning of the function body.
3 Thislineisalocal varigble definition.

4-5 Thisfor-loop raises base to the power of exponent and stores the outcome
inresul t.

6 Thislineraurnsr esul t asthereturn vaue of the function.

7 Thisbrace marksthe end of the function body.

Liging 4.9 illugrates how this function is caled. The effect of this cal is thet
first the argument values 2 and 8 are, respectively, assigned to the parameters base
and exponent , and then the function body is evauated.

#i ncl ude <i ostream h>

nmai n (voi d)

{
}

cout << "2~ 8 =" << Power(2,8) << '\n';

When run, this program will produce the following output:

2" 8 =256

46

C++ Essentials Copyright © 2005 PragSoft

In generd, a function should be declared before its is used. A function
declaration smply congdis of the function prototype, which specifies the function
name, parameter types, and return type. Line 2 in Listing 4.10 shows how Power
may be declared for the above program. Although a function may be declared
without its parameter names,

int Power (int, unsigned int);

thisis not recommended unless the role of the parametersis obvious.

Listing 4.10
1 | #i ncl ude <i ostream h>
2 |int Power (int base, unsigned int exponent); // function declaration
3 | main (void)
414
5 cout << "2 N 8 =" << Power(2,8) << '\n';
61}
7 | int Power (int base, unsigned int exponent)
8 |{
9 int result =1,
10 for (int i =0; i < exponent; ++)
11 result *= base;
12 return result;
13 |}

Because a function definition contains a prototype, it ds0 serves as a
declaration. Therefore if the definition of a function appears before its use, no
additional declaration is needed. Use of function prototypes is neverthdess
encouraged for dl circumstances. Collecting these in a separate header file enables
other programmers to quickly access the functions without having to read their
entire definitions.

O

www. pragsoft.com Chapter 4: Functions a7

Parameters and Arguments

C++ supports two styles of parameters: value and reference. A value parameter
receives a copy of the vaue of the argument passed to it. Asaresult, if the function
makes any changes to the parameter, thiswill not affect the argument. For example,
in

#i ncl ude <i ostream h>

voi d Foo (int num
{

num = 0;
cout << "num=" << num<< '\n';

}

int nain (void)

{

int x = 10;

Foo(x) ;

cout << "x =" <«< x << '\n';
return O;

}

the sngle parameter of Foo is a vdue parameter. As far as this function is
concerned, num behaves jus like a locd variable indde the function. When the
function is called and x passed to it, numreceives a copy of the vdue of x. As a
result, dthough numis set to 0 by the function, this does not affect x. The program
produces the following output:

A reference parameter, on the other hand, receives the argument passed to
it and works on it directly. Any changes made by the function to a reference
parameter is in effect directly applied to the argument. Reference parameters will
be further discussed in Chapter 5.

Within the context of function cals, the two styles of passng arguments are,
respectively, caled pass-by-value and pass-by-reference. It is perfectly vaid for
a function to use pass-by-vaue for some of its parameters and pass-by-reference

for others. The former is used much more often in practice.
O

48

C++ Essentials Copyright © 2005 PragSoft

Global and Local Scope

Everything defined at the program scope leve (i.e., outside functions and classes) is
sad to have a global scope. Thus the sample functions we have seen so far al
have a global scope. Variables may aso be defined at the global scope:

int year = 1994; /1 global variable
int Max (int, int); /1 global function
int main (void) /1 global function
{

/...

}

Uninitidized globd variables are autométicaly initidized to zero.

Since globa entities are visble at the program levd, they must dso be unique
at the program level. This means that the same globd variable or function may not
be defined more than once at the globd level. (However, as we will see later, a
function name may be reused so long as its Sgnature remans unique.) Globa
entities are generdly ble everywhere in the program.

Each block in a program defines a local scope. Thus the body of a function
represents a local scope. The parameters of a function have the same scope as the
function body. Variables defined within aloca scope are visble to that scope only.
Hence, a variable need only be unique within its own scope. Local scopes may be
nested, in which case the inner scopes override the outer scopes. For example, in

int xyz; /1 xyz is gl obal
voi d Foo (int xyz) /!l xyz is local to the body of Foo
{
if (xyz >0) {
doubl e xyz; /1l xyz is local to this block
/...
}

}

there are three distinct scopes, each containing adistinct xyz.

Genadly, the lifetime of a varidble is limited to its scope. So, for example,
globd varigbles lagt for the duration of program execution, while loca varigbles are
created when their scope is entered and destroyed when their scope is exited. The
memory space for globa variables is reserved prior to program execution
commencing, whereas the memory space for loca variables is dlocated on the fly

during program execution.
O

www. pragsoft.com Chapter 4: Functions 49

Scope Operator

Because a loca scope overrides the globa scope, having alocd variable with the
same name as a globa variable makes the latter inaccessible to the local scope. For
example, in

int error;

void Error (int error)

{
}

theglobd error isinaccessbleinsde E r or, because it is overridden by the loca
error parameter.

This problem is overcome using the unary scope operator : : which takes a
globd entity as argument:

...

int error;

void Error (int error)

{
/...
if (::error 1=0) /1l refers to global error

/...

50

C++ Essentials Copyright © 2005 PragSoft

Auto Variables

Because the lifetime of a locd variable is limited and is determined automaticaly,
these variables are dso called automatic. The storage class specifier aut o may be
used to explicitly specify aloca varidble to be autometic. For example:

voi d Foo (void)

{

auto int xyz; /1 same as: int xyz;
/...
}

Thisisrarely used because dl local variables are by default automdtic.

www. pragsoft.com Chapter 4: Functions 51

Register Variables

As mentioned earlier, variables generdly denote memory locations where variable
vaues are stored. When the program code refers to a variable (eg., in an
expression), the compiler generates machine code which accesses the memory
location denoted by the variable. For frequently-used variables (e.g., loop
variables), efficiency gains can be obtained by keeping the varidble in a regigter
ingtead thereby avoiding memory access for that variable.

The storage class specifier r egi st er may be used to indicate to the compiler
that the variable should be stored in aregigter if possible. For example:

for (register int i =0; i <n; +H)
sum+= i;

Here, each time round the loop, i is used three times. once when it is compared to
n, once when it is added to sum and once when it is incremented. Therefore it
makes senseto keep i in aregister for the duration of the loop.

Note that regi ster isonly a hint to the compiler, and in some cases the
compiler may choose not to use a register when it is asked to do so. One reason
for thisis that any machine has a limited number of registers and it may be the case
that they aredl inuse.

Even when the programmer does not use regi ster declaraions, many
optimizing compilers try to make an intelligent guess and use registers where they
are likely to improve the performance of the program.

Use of register declarations can be left as an after thought; they can dways be
added later by reviewing the code and inserting it in gppropriate places.

O

52

C++ Essentials Copyright © 2005 PragSoft

Static Variables and Functions

It is often useful to confine the accessibility of a globd variable or function to a
gangle file. This is facilitated by the storage class specifier stati c. For example,

condder a puzzle game program which conggts of three files for game generation,

game solution, and user interface. The game solution file would contain a Sol ve

function and a number of other functions ancillary to Sol ve. Because the latter are
only for the private use of Sol ve, it is best not to make them accessble outsde the

file

static int FindNextRoute (void) // only accessible in this file

{

}
...

/...

int Solve (void) /1 accessible outside this file

{
}

...

The same argument may be gpplied to the globa varidbles in this file that are
for the private use of the functions in the file. For example, a globa variable which
records the length of the shortest route so far is best defined as Satic:

static int shortestRoute; /1 static global variable

A locd variable in a function may aso be defined as gatic. The variable will
remain only accessble within its locd scope; however, its lifetime will no longer be
confined to this scope, but will instead be globd. In other words, a datic locd
variableisaglobd variable which is only accessble within itsloca scope.

Static loca varigbles are useful when we want the value of alocd variable to
persst across the calsto the function in which it gppears. For example, consder an
Error function which keeps a count of the errors and aborts the program when the
count exceeds a preset limit:

void Error (char *nessage)

{
static int count = O; /] static local variable
if (+tcount > limt)
Abort ();
/...
}

Like globd varigbles, static local variables are automaticaly initiaized to O.

www. pragsoft.com Chapter 4: Functions 53

Extern Variables and Functions

Because a globd varigble may be defined in one file and referred to in other files,
some means of telling the compiler that the varidble is defined esewhere may be
needed. Otherwise, the compiler may object to the variable as undefined. This is
facilitated by an ext er n declaration. For example, the declaration

extern int size; /1 variable declaration

informs the compiler that si ze is actudly defined somewhere (may be later in this
file or in another file). Thisis cdled avariable declaration (not definition) because
it does not lead to any storage being dlocated for si ze.

It is a poor programming practice to include an initidizer for an extern
vaiable, snce this causes it to become a variabdle definition and have storage
alocated for it:

extern int size = 10; /1 no longer a declaration!

If there is another definition for si ze dsewhere in the program, it will eventudly
clash with this one.

Function prototypes may aso be declared as extern, but this has no effect
when a prototype appears a the globa scope. It is more useful for declaring
function prototypes ingde a function. For example:

doubl e Tangent (doubl e angl e)

{
extern doubl e sin(double); /1 defined el sewhere
extern doubl e cos(doubl e); /1 defined el sewhere
return sin(angle) / cos(angle);

}

The best place for ext er n declarations is usudly in heeder files so that they

can be eadily included and shared by source files.
!

54

C++ Essentials Copyright © 2005 PragSoft

Symbolic Constants

Preceding a variable definition by the keyword const makes that variable read-
only (i.e,, asymbolic congtant). A congtant must be initidized to some vaue when it
is defined. For example:

const int nmaxS ze = 128;
const double pi = 3.141592654;

Once defined, the vaue of a congtant cannot be changed:
naxS ze = 256; /1 illegal!
A congtant with no type specifier is assumed to be of typei nt :
const maxS ze = 128; /1 maxSize is of type int

With pointers, two aspects need to be considered: the pointer itself, and the
object pointed to, either of which or both can be congtant:

const char *strl = "pointer to constant";
char *const str2 = "constant pointer";
const char *const str3 = "constant pointer to constant";

stri[0] ="'P; /1 illegal!
strl = "ptr to const"; /1 ok
str2 = "const ptr"; /1 illegal!
str2[0] ="'P; /1 ok
str3 = "const to const ptr"; /1 illegal!l
str3[0] ='C; /1 illegal!

A function parameter may aso be declared to be congtant. This may be used
to indicate that the function does not change the vaue of a parameter:

int Power (const int base, const unsigned int exponent)

{
}

/...

A function may aso return a constant result:

const char* SystenVersion (void)

{
}

return "5.2.1";

The usud place for congtant definition is within header files so thet they can be
shared by source files.
O

www. pragsoft.com Chapter 4: Functions 55

Enumerations

An enumeration of symbolic congtantsisintroduced by an enumdedaration. Thisis
useful for declaring a set of closdy-related congtants. For example,

enum {north, south, east, west};

introduces four enumerators which have integrd vaues garting from O (i.e,
nort hisO, sout h is1, etc.) Unlike symbolic congtants, however, which are read-
only varigbles, enumerators have no alocated memory.

The default numbering of enumerators can be overruled by explicit initidization:

enum{north = 10, south, east = 0, west};

Here, sout h is11 and west is1.

An enumeration can aso be named, where the name becomes a user-defined
type. Thisis useful for defining variables which can only be assgned alimited set of
vaues. For example, in

enumD rection {north, south, east, west};
Drection d;

d can only be assgned one of the enumeratorsfor D r ect i on.
Enumerations are particularly ussful for naming the cases of a switch statement.

switch (d) {
case north: //...
case south: //...
case east: //...
case west: //...

}

We will extensvely use the following enumeration for representing boolean
vauesin the programsin this book:

enum Bool {false, true};

56 C++ Essentials Copyright © 2005 PragSoft

Runtime Stack

Like many other modern programming languages, C++ function cal execution is
based on a runtime stack. When a function is called, memory space is alocated on

this stack for the function parameters, return value, and locd variables, aswell asa

local stack area for expresson evaluation. The alocated space is cdled a stack
frame. When a function returns, the alocated stack frame is released so that it can

be reused.

For example, consder a Situation where nai n cdls a function cdled Sol ve
which in turn cdls another function caled Nor mal i ze:

int Nornmalize (void)

{
}

...

int Solve (void)

/...

Nornmal i ze();

...

int nain (void)

/...

Sol ve();

...

Figure 4.5 illudrates the stack frame when Nor nal i ze is being executed.

Figure 4.5 Function call stack frames.

main

Solve

Normalize

)

It is important to note thet the calling of a function involves the overheads of
creating a stack frame for it and removing the stack frame when it returns. For most
functions, this overhead is negligible compared to the actud computation the

function performs.

O

Www. pragsoft.com

Chapter 4: Functions

57

Inline Functions

Suppose that a program frequently requires to find the absolute vaue of an integer
quantity. For a vaue denoted by n, this may be expressed as.

(n>07?n: -n

However, instead of replicating this expresson in many places in the program, it is
better to define it as afunction:

int Abs (int n)
{

}

The function verson has a number of advantages. Firg, it leads to a more
readable program. Second, it is reusable. And third, it avoid undesirable side-
effects when the argument isitsalf an expression with sde-effects.

The disadvantage of the function verson, however, is that its frequent use can
lead to a condderable performance pendty due to the overheads associated with
cdling a function. For example, if Abs is used within a loop which is iterated
thousands of times, then it will have an impact on performance. The overhead can
be avoided by defining Abs asan i nl i ne function:

returnn>07?n: -n;

inline int Abs (int n)

{
}

The effect of thisisthat when Abs is cdled, the compiler, instead of generating
code to call Abs, expands and substitutes the body of Abs in place of the cdl.
While essentidly the same computation is performed, no function cdl is involved
and hence no stack frameis alocated.

Because cdls to an inline function are expanded, no trace of the function itsdf
will be left in the compiled code. Therefore, if afunction is defined inline in onefile,
it may not be avallable to other files. Consequently, inline functions are commonly
placed in header files so that they can be shared.

Likethe regi ster keyword, i nline isa hint which the compiler is not
obliged to observe. Generdly, the use of inline should be redtricted to smple,
frequently used functions. A function which contains anything more than a couple of
datements is unlikely to be a good candidate. Use of inline for excessvely long and
complex functionsis dmog certainly ignored by the compiler. |

returnn>07?n: -n;

58 C++ Essentials Copyright © 2005 PragSoft

Recursion

Table 4.11

A function which cdls itsdf is sad to be recursive. Recurson is a generd
programming technique applicable to problems which can be defined in terms of
themsdves. Take the factorid problem, for instance, which is defined as.

Factoria of Ois 1.

Factoria of a positive number n isn timesthe factorid of n-1.

The second line clearly indicates that factorid is defined in terms of itself and hence
can be expressed as a recursive function:

int Factorial (unsigned int n)

{
}

For n set to 3, Table 4.11 provides a trace of the calsto Factorial . The
stack frames for these cdls appear sequentidly on the runtime stack, one &fter the
other.

returnn==07?1: n* Factorial (n-1);

Factorial(3) execution trace.

Call n n ==20 n * Factorial (n-1) Ret urns

First 3 0 3 * Factorial (2) 6
Second 2 0 2 * Factorial (1) 2
Third 1 0 1 * Factorial (0) 1
Fourth 0 1 1

A recurdve function must have at least one termination condition which can
be stidfied. Otherwise, the function will cal itsdf indefinitely until the runtime stack
overflows. The Factorid function, for example, has the termination condition n ==
0 which, when satisfied, causes the recursive cdls to fold back. (Note that for a
negdtive n this condition will never be satified and Fact ori al will fail).

As a generd rule, dl recursve functions can be rewritten using iteration. In
stuations where the number of stack frames involved may be quite large, the
iterative verson is preferred. In other cases, the elegance and smplicity of the
recursve verson may give it the edge.

For factorid, for example, a very large argument will lead to as many stack
frames. An iterative versgon istherefore preferred in this case:

int Factorial (unsigned int n)

{

int result = 1;
while (n >0) result *=n--;
return result;

www. pragsoft.com Chapter 4: Functions 59

Default Arguments

Default argument is a programming convenience which removes the burden of
having to specify argument vaues for al of a function's parameters. For example,
congder afunction for reporting errors:

void Error (char *message, int severity = 0);

Here, severi ty has adefault argument of O; both the following cdls are therefore
vdid:

Error ("D vision by zero", 3); /1 severity set to 3
Error ("Round off error"); /] severity set to O

As the firg cdl illudrates, a default argument may be overridden by explicitly
Specifying an argumen.

Default arguments are suitable for Stuations where certain (or dl) function
parameters frequently teke the same values. In Error, for example, severity 0
errors are more common than others and therefore a good candidate for default
argument. A less gppropriate use of default arguments would be:

int Power (int base, unsigned int exponent = 1);

Because 1 (or any other vaue) is unlikey to be a frequently-used one in this
gtuation.

To avoid ambiguity, dl default arguments must be tralling arguments. The
following declaration is thereforeillegd:

void Error (char *nessage = "Bonmb", int severity); // Illegal!

A default argument need not necessarily be a congtant. Arbitrary expressons
can be used, s0 long as the variables used in the expresson are available to the
scope of the function definition (e.g., globd variables).

The accepted convention for default arguments is to specify them in function
declarations, not function definitions. Because function declarations appear in
header files, this enables the user of a function to have control over the default
arguments. Thus different default arguments can be specified for different Stuations.
It is, however, illegd to specify two different default arguments for the same

functionin afile
O

60 C++ Essentials Copyright © 2005 PragSoft

Variable Number of Arguments

Listing 4.11

1
2

~NOoO Ol h W

9
10
11

12
13
14
15
16

Annotation

It is sometimes desirable, if not necessary, to have functions which take a variable
number of arguments. A smple example is a function which takes a set of menu
options as arguments, displays the menu, and alows the user to choose one of the
options. To be generd, the function should be able to accept any number of
options as arguments. This may be expressed as

int Menu (char *optionl ...);

which states that Menu should be given one argument or more.

Menu can access its arguments using a set of macro definitions in the header
filest dar g. h, asillugrated by Listing 4.11. The relevant macros are highlighted in
bol d.

#i ncl ude <i ostream h>
#i ncl ude <stdarg. h>
int Menu (char *optionl ...)
{
va_ list args; /] argunent |ist
char* option = optionl;
i nt count = 0, choice = 0;
va _start(args, optionl); /] initialize args
do {
cout << ++count << ", " << option << '\n';
} while ((option = va_ arg(args, char*)) 1= 0);
va_end(args); /1 clean up args
cout << "option? "
ci n >> choi ce;
return (choice > 0 & choi ce <= count) ? choice : 0;
}

5 To accessthe arguments, ar gs isdeclared to be of typeva i st.

8 Args isintidized by cdling va_start. The second argument to va_start
must be the lagt function parameter explicitly declared in the function header
(i.e, opt i onl here).

11 Subsequent arguments are retrieved by cdling va_ar g. The second argument
tova_ar g must be the expected type of that argument (i.e., char * here). For
this technique to work, the last argument must be a 0, marking the end of the
agument ligt. Va_ar g is caled repeatedly until this O is reached.

www. pragsoft.com Chapter 4: Functions 61

12 Findly, va_end is cdled to restore the runtime stack (which may have been
modified by the earlier cdls).

The sample call

int n = Mnu(
"Qpen file",
"Aose file",
"Revert to saved file",
"Delete file",
"Quit application”,
0);

will produce the following output:

1. pen file

2. Qose file

3. Revert to saved file
4. Delete file

5. Quit application
option?

62 C++ Essentials Copyright © 2005 PragSoft

Command Line Arguments

Dialog 4.3
1
2
3

Listing 4.12

1
2

QUOWoO~NOOULA~W

[E=Y

When a program is executed under an operating system (such as DOS or UNIX),
it can be passed zero or more arguments. These arguments appear after the
program executable name and are separated by blanks. Because they appear on
the same line as where operating system commands are issued, they are cdled
command line arguments.

As an example, consder a program named sumwhich prints out the sum of a
st of numbers provided to it as command line arguments. Didog 4.3 illustrates
how two numbers are passed as arguments to sum ($ isthe UNIX prompt).

$ sum 10.4 12.5
22.9
$

Command line arguments are made availlable to a C++ program viathe nai n
function. There are two ways in which mai n can be defined:

int nain (void);
int main (int argc, const char* argv[]);

The latter is used when the program is intended to accept command line arguments.
The first parameter, ar gc, denotes the number of arguments passed to the program
(including the name of the program itsdf). The second parameter, ar gv, is an array
of the string congtants which represent the arguments. For example, given the

command linein Didog 4.3, we have:
argc is 3
ar gv[0] is "sum
argv[1] is "10.4"
argv[2] is "12.5"

Liging 4.12 illudrates a Smple implementation for sum Strings are converted to
real numbersusing at of , whichisdefinedin stdl i b. h.

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

int main (int argc, const char *argv[])
{
doubl e sum= 0;
for (int i =1; i <argc; ++)
sum+= atof (argv[i]);
cout << sum<< '\n';
return O;

www. pragsoft.com Chapter 4: Functions 63

Exercises

4.16 Write the programs in exercises 1.1 and 3.1 as functions.
4.17 Given the fallowing definition of a Swap function
void Snap (int x, int vy)
{
int tenp = x;
X =Y,
y = tenp;
}

what will bethe vadue of x andy after the following cdl:
x = 10;

y = 20;
Snap(x, Y);

4.18 What will the following program output when executed?

#i ncl ude <i ostream h>
char *str = "global";

void Print (char *str)

{
cout << str << '\n';
{
char *str = "local ";
cout << str << '\n';
cout << ::str << '\n';
}
cout << str << '\n';
}
int nain (void)
{
Print("Paraneter");
return O;
}
4.19 Write a function which outputs dl the prime numbers between 2 and a given
positive integer n:

void Prines (unsigned int n);

A number isprimeif itisonly divisble by itsdlf and 1.

4.20 Define an enumeration caled Mont h for the months of the year and use it to define
afunction which takes amonth as argument and returns it as a congtant string.

64 C++ Essentials Copyright © 2005 PragSoft

4.21 Define an inline function cdled | sAl pha which returns nonzero when its argument
isaletter, and zero otherwise.

4.22 Define arecursve verson of the Power function described in this chepter.
4,23 Write afunction which returns the sum of alist of red vaues
double Sum(int n, double val ...);

where n denotes the number of vduesin thelis.

www. pragsoft.com Chapter 4: Functions 65

5. Arrays, Pointers, and References

This chapter introduces the array, pointer, and reference data types and illustrates
thelr use for defining variables.

Anarray conssts of aset of objects (cdled its elements), dl of which are of
the same type and are arranged contiguoudy in memory. In generd, only the array
itself has a symbolic name, not its dements. Each dement is identified by an index
which denotes the postion of the eement in the array. The number of dementsin
an aray is cdled its dimenson. The dimenson of an aray is fixed and
predetermined; it cannot be changed during program execution.

Arrays are suitable for representing composite data which consst of many
amilar, individud items. Examples indude a lis of names, a table of world cities
and their current temperatures, or the monthly transactions for a bank account.

A pointer is smply the address of an object in memory. Generdly, objects
can be accessed in two ways. directly by their symbolic name, or indirectly through
apointer. The act of getting to an object viaa pointer to it, is called dereferencing
the pointer. Pointer variables are defined to point to objects of a specific type so
that when the pointer is dereferenced, a typed object is obtained.

Pointers are useful for creeting dynamic objects during program execution.
Unlike norma (globa and local) objects which are dlocated storage on the runtime
gstack, a dynamic object is alocated memory from a different storage area cdled
the heap. Dynamic objects do not obey the norma scope rules. Their scope is
explicitly controlled by the programmer.

A reference provides an dternative symbolic name @lias) for an object.
Accessng an object through a reference is exactly the same as ng it through
its origind name. References offer the power of pointers and the convenience of
direct access to objects. They are used to support the call-by-reference style of
function parameters, especialy when large objects are being passed to functions.

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 65

Arrays

Listing 5.13

1

A WN

0o ~NOo Ol

An array variable is defined by specifying its dimension and the type of its dements.
For example, an array representing 10 height measurements (each being an integer
quantity) may be defined as.

i nt heights[10];

The individual elements of the array are accessed by indexing the array. The first
array element aways has the index 0. Therefore, hei ght s[0] and hei ght s[9]
denote, respectively, the fird and last dement of hei ghts. Each of hei ghts
elements can be treated as an integer variable. So, for example, to set the third
element to 177, we may write:

hei ghts[2] = 177;

Attempting to access a nonexistent array dement (eg., heights[-1] or
hei ght s[10]) leads to a serious runtime error (called ‘index out of bounds
error).

Processing of an array usudly involves a loop which goes through the array
eement by dement. Liding 5.13 illudraes this usng a function which tekes an
array of integers and returns the average of its dements.

const int size = 3;
doubl e Average (int nuns[size])
doubl e average = 0;
for (register i =0; i < size; ++)

average += nuns[i];
return average/si ze;

Like other varidbles, an aray may have an initidizer. Braces are used to
specify alist of comma-separated initid vaues for array eements. For example,

int nuns[3] = {5, 10, 15};

initidizes the three dements of nuns to 5, 10, and 15, respectively. When the
number of vauesin the initidizer is less than the number of dements, the remaining
dements are initialized to zero:

int nuns[3] = {5, 10}; /] nunms[2] initializes to O

66

C++ Essentials Copyright © 2005 PragSoft

Listing 5.14

1
2
3

~NOo Ol b

When a complete initidizer is used, the array dimension becomes redundant,
because the number of dements is implicit in the initidizer. The firgt definition of
nuns can therefore be equivaently written as.

int nuns[] = {5, 10, 15}; /1 no di mensi on needed

Another gtuation in which the dimengon can be omitted isfor an array function
parameter. For example, the Average function above can be improved by
rewriting it so that the dimension of nuns is not fixed to a constant, but specified by
an additiona parameter. Listing 5.14 illudratesthis.

doubl e Average (int nuns[], int size)
doubl e average = 0;
for (register i =0; i < size; +H)
average += nuns[i];
return average/ si ze;
}

A C++ gring issmply an array of characters. For example,
char str[] = "HELLO';

defines st r to be an array of sx characters: five letters and a null character. The
terminating null character isinserted by the compiler. By contradt,

char str[] ={'H, "E, 'L, 'L, 'O};

defines st r to be an array of five characters.
It is easy to cdculate the dimension of an array using the sSzeof operator. For
example, given an array ar whose eement typeis Type, thedimenson of ar is

si zeof (ar) / sizeof (Type)

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 67

Multidimensional Arrays

Table 5.12

Figure 5.6

An aray may have more than one dimengion (i.e, two, three, or higher). The
organization of the array in memory is dill the same (a contiguous sequence of
elements), but the programmer’ s perceived organization of the dementsis different.
For example, suppose we wish to represent the average seasonal temperature for
three mgjor Audtrdian capita cities (see Table 5.12).

Average seasonal temperature.

Spring Summer Autumn Winter
Sydney 26 34 22 17
Melbourne 24 32 19 13
Brisbane 28 38 25 20

Thismay be represented by atwo-dimensiond array of integers:

int seasonTenp[3][4];

The organization of this array in memory is as 12 consecutive integer elements. The
programmer, however, can imagine it as three rows of four integer entries each (see
Figure 5.6).

Organization of seasonTemp in memory.
.. |26 |34 [22 |17 |24 [32 | 19 |13 [28 |38] 25 |20].

First row Second row Third row

As before, elements are accessed by indexing the array. A separate index is
needed for each dimension. For example, Sydney’s average summer temperature
(first row, second column) isgiven by seasonTenp[O] [1] .

The array may beinitidized usng anested initidizer:

int seasonTenp[3][4] = {
{26, 34, 22, 17},
{24, 32, 19, 13},
{28, 38, 25, 20}

b

Because thisis mapped to a one-dimensiond array of 12 dementsin memory, it is
equivaent to:

int seasonTenp[3][4] = {
26, 34, 22, 17, 24, 32, 19, 13, 28, 38, 25, 20
b

The nested initidizer is preferred because as wdl as being more informative, it is
more versatile. For example, it makes it possble to initidize only the first eement of
each row and have the rest default to zero:

68

C++ Essentials Copyright © 2005 PragSoft

Listing 5.15

1
2

~No o bhw

O © @

11
12
13
14
15
16

int seasonTenp[3][4] = {{26}, {24}, {28}};

We can dso omit the first dimension (but not subsequent dimensions) and let it be
derived from theinitidizer:

int seasonTenp[][4] = {
{26, 34, 22, 17},
{24, 32, 19, 13},
{28, 38, 25, 20}

b

Processing a multidimensona array is Smilar to a one-dimensond array, but
uses nested loops ingtead of asingle loop. Listing 5.15 illudtrates this by showing a
function for finding the highest temperature in seasonTenp.

const int rows
const int colums

3,
4,

i nt seasonTenp[rows][colums] = {
{26, 34, 22, 17},
{24, 32, 19, 13},
{28, 38, 25, 20}

h
int HghestTenp (int tenp[rows][colums])
{

int highest = 0;

for (register i = 0; i <rows; ++)

for (register j = 0; j < colums; ++)
if (tenp[i][j] > highest)
hi ghest = tenmp[i][j];

return hi ghest;

}

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 69

Pointers

A pointer is Smply the address of a memory location and provides an indirect way
of accessing data in memory. A pointer variable is defined to ‘point to' data of a
specific type. For example:

i nt *ptril,; /]l pointer to an int
char *ptr2; /1 pointer to a char

Thevalue of a pointer variable is the address to which it points. For example,
given the definitions

i nt num
we can write:

ptrl = &um

Thesymbol & isthe address operator; it takes a variable as argument and returns
the memory address of that variable. The effect of the above assgnment is that the
address of numis assgned to pt r 1. Therefore, we say that ptr1 points to num
Figure 5.7 illugrates this diagrammaticaly.

Figure 5.7 A simple integer pointer.
ptrl num

Given that pt r 1 points to num the expression

*ptrl

dereferences pt r 1 to get to what it points to, and is therefore equivaent to num
Thesymbol * isthe dereference operator; it takes a pointer as argument and
returns the contents of the location to which it points.

In generd, the type of a pointer must match the type of the data it is set to
point to. A pointer of type voi d*, however, will maich any type. Thisis useful for
defining pointers which may point to data of different types, or whose type is
origindly unknown.

A pointer may be cast (type converted) to another type. For example,

ptr2 = (char*) ptrl;

convertspt r 1 to char pointer before assgning it to ptr 2.

Regardiess of its type, a pointer may be assigned the vaue O (called the null
pointer). The null pointer is used for initiadizing pointers, and for marking the end of
pointer-based data structures (e.g., linked lists).

O

70 C++ Essentials Copyright © 2005 PragSoft

Dynamic Memory

In addition to the program stack (which is used for storing globd varigbles and
stack frames for function calls), another memory ares, called the heap, is provided.
The hegp is used for dynamicaly dlocating memory blocks during program
execution. As areault, it is dso caled dynamic memory. Smilarly, the program
sack isaso caled static memory.

Two operators are used for adlocating and deallocating memory blocks on the
heap. The new operator takes a type as argument and alocated a memory block
for an object of that type. It returns a pointer to the allocated block. For example,

new int;
new char[10] ;

int *ptr
char *str

dlocate, respectively, ablock for storing a single integer and a block large enough
for storing an array of 10 characters.

Memory dlocated from the hegp does not obey the same scope rules as
norma variables. For example, in

voi d Foo (void)

{

char *str = new char[10];
/...

}

when Foo returns, the local variable str is destroyed, but the memory block
pointed to by st r isnot. The latter remains dlocated until explicitly released by the
programmer.

The del et e operator is used for releasing memory blocks alocated by new. It
takes a pointer as argument and releases the memory block to which it points. For

example:
del ete ptr; /1 del ete an obj ect
delete [] str; /1l delete an array of objects

Note that when the block to be deleted is an array, an additionad [] should be
included to indicate this. The sgnificance of this will be explained later when we
discuss classes.

Should del et e be gpplied to a pointer which points to anything but a
dynamically-alocated object (e.g., a varidble on the stack), a serious runtime error
may occur. It isharmlessto gpply del et e to the O pointer.

Dynamic objects are useful for cregting data which last beyond the function
cal which crestes them. Ligting 5.16 illudrates this usng a function which tekes a
dtring parameter and returns a copy of the string.

Listing 5.16

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 71

1 | #include <string. h>
2 | char* Copyd (const char *str)
3
4 char *copy = new char[strlen(str) + 1];
5 strcpy(copy, str);
6 return copy;
71}
Annotation
1 Thisisthe standard siring header file which declares a variety of functions for

manipulating strings

4 Thestrl en function (declared in st ri ng. h) counts the charactersin its string
agument up to (but excluding) the find null character. Because the null
character is not included in the count, we add 1 to the total and dlocate an
array of characters of that Sze.

5 Thestrcpy function (declared in stri ng. h) copies its second argument to
itsfirdt, character by character, including the fina null character.

Because of the limited memory resources, there is dways the possbility that
dynamic memory may be exhausted during program execution, especialy when
many large blocks are dlocated and none released. Should new be unable to
alocate a block of the requested size, it will return O ingtead. It is the responsibility
of the programmer to ded with such possbilities. The exception handling
mechanism of C++ (explained in Chapter 10) provides a practicd method of
dedling with such problems.

72 C++ Essentials Copyright © 2005 PragSoft

Pointer Arithmetic

Figure 5.8

Listing 5.17

abhwNEk

In C++ one can add an integer quantity to or subtract an integer quantity from a
pointer. This is frequently used by programmers and is caled pointer arithmetic.
Pointer arithmetic is not the same as integer arithmetic, because the outcome
depends on the size of the object pointed to. For example, suppose that an i nt is
represented by 4 bytes. Now, given

char *str = "HELLO';
int nuns[] = {10, 20, 30, 40};
int *ptr = &uns[0]; /1 pointer to first el enent

st r++ advances st r by one char (i.e, one byte) so that it points to the second
character of " HELLO', whereas pt r ++ advancesptr by onei nt (i.e, four bytes)
S0 that it points to the second dement of nuns. Figure 5.8 illudrates this
diagrammaticaly.

Pointer arithmetic.

H|E|L|L|O]|\0 10 20 30 40
“ 1 1 1 “| 1 1 1 1 1 1 1 1
str ptr
str++ étl’++

It follows, therefore, that the dements of " HELLO' can bereferredtoas *str,
(str + 1),(str + 2),ec. Smilaly, thedementsof nuns can be referred to
as*ptr,*(ptr + 1),*(ptr + 2),and*(ptr + 3).

Ancther form of pointer arithmetic dlowed in C++ involves subtracting two
pointers of the same type. For example:

int *ptrl = &uns[1];
int *ptr2 = &uns[3];
int n=ptr2 - ptri; /1 n becones 2

Pointer arithmetic is very handy when processng the dements of an aray.
Ligting 5.17 shows as an example asiring copying function smilar to st r cpy.

voi d CopyString (char *dest, char *src)

whil e (*dest ++ = *src++)

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 73

Annotation

Listing 5.18

1
2
3

©O©oo~NOoO O~

Annotation

Listing 5.19

1
2
3

o~NO Ol A~

3 Thecondition of thisloop assgns the contents of sr ¢ to the contents of dest
and then increments both pointers. This condition becomes 0 when the fina
null character of src iscopied to dest .

In turns out that an array variable (such as nuns) is itsdf the address of the
first element of the array it represents. Hence the dements of nuns can aso be
referred to using pointer arithmetic on nuns, that is, nuns[i] is equivdent to
*(nuns + i). The difference between nuns and pt r isthat nuns is a congtant,
S0 it cannot be made to point to anything else, whereas ptr is a variable and can
be made to point to any other integer.

Liding 5.18 shows how the H ghest Tenp function (shown earlier in Lising
5.15) can be improved using pointer arithmetic.

int HghestTenp (const int *tenp, const int rows, const int colums)
{
int highest = 0;
for (register i =0; i <rows; ++)
for (register j = 0; j < colums; ++)
if (*(tenp +i * columns + j) > highest)
hi ghest = *(tenp +i * colums + j);
return hi ghest;
}

1 Instead of passing an array to the function, we pass an i nt pointer and two
additiond parameters which specify the dimengions of the array. In this way,
the function is not redtricted to a specific array Sze.

6 Theexpresson*(tenp + i * colums + j) isequivdenttotenp[i][]j]
in the previous verson of thisfunction.

H ghest Tenp can be smplified even further by tregting tenp as a one-
dimensond array of row * col umm integers. Thisisshown in Ligting 5.19.

int HghestTenp (const int *tenp, const int rows, const int colums)
{
int highest = 0;
for (register i =0; i <rows * colums; ++)
if (*(tenp + i) > highest)
hi ghest = *(tenp + i);
return highest;
}

74

C++ Essentials Copyright © 2005 PragSoft

Function Pointers

It is possible to take the address of afunction and store it in a function pointer. The
pointer can then be used to indirectly call the function. For example,

int (*Conpare)(const char*, const char*);

defines a function pointer named Conpar e which can hold the address of any
function that takes two congtant character pointers as arguments and returns an
integer. The dring comparison library function strcnp, for example, is such.
Therefore:

Conpare = &strcnp; /1 Conpare points to strcnp function
The & operator is hot necessary and can be omitted:

Conpare = strcnp; /1 Conpare points to strcnp function
Alternatively, the pointer can be defined and initidized a once:

int (*Conpare)(const char*, const char*) = strcnp;

When a function address is assgned to a function pointer, the two types must
match. The above definition is vdid because strcnp has a matching function

prototype:

int strcnp(const char*, const char*);

Given the above definition of Conpar e, st rcnp can be ether cdled directly,
or indirectly via Conpar e. The following three cdls are equivaent:

strenp(" TonY, "TinY); /1 direct call
(*Conpare) ("Tont, "Tint); /1 indirect call
Conpar e("Tom', "TinY); /1 indirect call (abbreviated)

A common use of a function pointer is to pass it as an argument to another
function; typicaly because the latter requires different versons of the former in
different circumstances. A good example is a binary search function for searching
through a sorted array of strings. This function may use a comparison function (such
as st r cnp) for comparing the search string againg the array strings. This might not
be appropriate for al cases. For example, strcnp is case-sendtive. If we wanted
to do the search in a non-case-sendtive manner then a different comparison
function would be needed.

As shown in Liging 5.20, by making the comparison function a parameter of
the search function, we can make the |atter independent of the former.

Listing 5.20

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 75

OO~ WNE

7

8

9
10
11
12
13
14
15
16
17

Annotation

int BinSearch (char *item char *table[], int n,
int (*Conpare)(const char*, const char*))
{
int bot = O;
int top =n- 1;
int md, cnp;
while (bot <= top) {
md = (bot + top) / 2
if ((cnp = Conpare(itemtable[md])) == 0)
return md,; /1 return itemindex
elseif (cnp <0)
top = md - 1; /]l restrict search to | ower half
el se
bot = md + 1, Il restrict search to upper half
}
return -1, /1 not found
}

1 Binay search is awel-known adgorithm for searching through a sorted list of
items. The search ligt is denoted by t abl e which is an aray of drings of
dimengonn. The searchitemisdenoted by i t em

2 Conpar e is the function pointer to be used for comparing i t emagang the
aray eements.

7 Eachtime round this loop, the search span is reduced by half. Thisis repeated
until the two ends of the search span (denoted by bot and t op) collide, or
until amatch is found.

9 Theitemis compared againg the middle item of the array.
10 If i t emmatches the middie item, the latter’ sindex is returned.

11 If i t emis less than the middle item, then the search is restricted to the lower
haf of the array.

14 If i temis greater than the middle item, then the search is redtricted to the
upper haf of the array.

16 Returns-1to indicate that there was no matching item.

The following example shows how Bi nSear ch may be cdled with strcnp
passed as the comparison function:

char *cities[] = {"Boston", "London", "Sydney", "Tokyo"};
cout << BinSearch("Sydney", cities, 4, strcnp) << '\n';

Thiswill output 2 as expected. O

76

C++ Essentials Copyright © 2005 PragSoft

References

A reference introduces an alias for an object. The notation for defining references
issmilar to that of pointers, except that &isused instead of *. For example,

doubl e nunml = 3. 14;
doubl e &un? = nuni; /!l numis a reference to nunl

defines nun® as areference to nund. After this definition nurml and nun? both refer
to the same object, asif they were the same varigble. It should be emphasized that
a reference does not creste a copy of an object, but merely a symbolic dias for it.
Hence, after

numi = 0. 16

both nuni and nun? will denote the vaue 0.16.
A reference must dways be initidized when it is defined: it should be an dias
for something. It would beillegd to define areference and initidize it later.

doubl e &nuns; /]l illegal: reference without an initializer
nun8 = nuni

You can dso initidize a reference to a congtant. In this case a copy of the
constant is made (after any necessary type conversion) and the reference is set to
refer to the copy.

int & = 1; /1 nrefers to a copy of 1

The reason that n becomes a reference to a copy of 1 rather than 1 itsdf is sofety.
Consgder what could happen if this were not the case.
int & = 1;

++X;
int y =x+1,

The 1 in the first and the 1 in the third line are likely to be the same object (most
compilers do congant optimization and dlocate both 1's in the same memory
location). So athough we expect y to be 3, it could turn out to be 4. However, by
forcing x to be a copy of 1, the compiler guarantees that the object denoted by x
will be different from both 1's.

The most common use of references is for function parameters. Reference
parameters facilitates the pass-by-r efer ence style of arguments, as opposed to the
pass-by-value syle which we have used so far. To observe the differences,
congder the three swap functionsin Listing 5.21.

Listing 5.21

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 77

1 |void Swapl (int x, int y) /]l pass-by-val ue (objects)
2 1{

3 int tenp = x;

4 X =Y,

5 y = tenp;

61}

7 | void Saap2 (int *x, int *y) /] pass-by-val ue (pointers)
8 |{

9 int tenp = *x;
10 *X =ty
11 *y = tenp;
12 |}
13 [void Snap3 (int &, int &) /'l pass-by-reference
14 | {
15 int tenp = x;
16 X =y,
17 y = tenp;
18 |}

Annotation
1 Although Snapl swaps x andy, this has no effect on the arguments passed to

the function, because Snapl recelves a copy of the arguments. What happens
to the copy does not affect the original.

7 Swap2 overcomesthe problem of Swapl by using pointer parameters instead.
By dereferencing the pointers, Saap2 gets to the origind vaues and swaps
them.

13 Swap3 overcomes the problem of Saapl by usng reference parameters
instead. The parameters become diases for the arguments passed to the
function and therefore swap them as intended.

Swap3 has the added advantage that its call syntax is the same as Saapl and
involves no addressing or dereferencing. The following mai n function illudtrates the
differences

int nain (void)

{
int i =10, j = 20;
Snapl(i, j); cout << i << ", " << j << '\n';
Mep2(&, &); cout <<i << ", " << <<'\n';
Swap3(i, j); cout << i << ", " <<j <<'\n';
}

When run, it will produce the following output:

10, 20
20, 10
10, 20 O

78 C++ Essentials Copyright © 2005 PragSoft

Typedefs

Typedef is a syntactic facility for introducing symbolic names for data types. Just as
a reference defines an dias for an object, a typedef defines an dias for atype. Its
main use is to amplify otherwise complicated type declardtions as an ad to
improved readability. Here are afew examples:

typedef char *String;
Typedef char Nang[12];
typedef unsigned int uint;

The effect of these definitions is that St ri ng becomes an dias for char*, Nane
becomes an dias for an array of 12 chars, and ui nt becomes an dias for
unsi gned i nt. Therefore:

String str; /]l is the sanme as: char *str;
Narre nare; /]l is the sanme as: char nane[12];
ui nt n; /]l is the same as: unsigned int n;

The complicated declaration of Conpar e inLiging 5.20 is a good candidate
for typedef:

typedef int (*Conpare)(const char*, const char*);

int BinSearch (char *item char *table[], int n, Conpare conp)

{
/..

if ((cnp = conp(item table[nd])) == 0)
return md;
/...

}

The typedef introduces Conpar e as a new type name for any function with the

given prototype. This makes Bi nSear ch’s Sgnature arguably smpler.
O

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 79

Exercises

5.24 Define two functions which, respectively, input vaues for the dements of an array
of reds and output the array elements:
void ReadArray (double nuns[], const int size);
void WiteArray (doubl e nuns[], const int size);
5.25 Define a function which reverses the order of the dements of an array of reds.
voi d Reverse (doubl e nuns[], const int size);
5.26 The following table specifies the mgor contents of four brands of breskfast cereals.
Define atwo-dimensond array to capture this data:
Fiber Sugar Fat Salt
Top Flake 12g 25g 169 0.4g
Cornabix 229 49 89 0.3g
Oatabix 28g 5g 9g 0.5g
Ultrabran 32g 79 29 0.2g
Write a function which outputs this table e ement by dement.
5.27 Define a function to input a list of names and store them as dynamically-alocated
dringsin an array, and afunction to output them:
voi d ReadNanes (char *nanes[], const int size);
void WiteNanes (char *names[], const int size);
Write another function which sortsthe list using bubble sort:
voi d Bubbl eSort (char *names[], const int size);
Bubble sort involves repeated scans of the list, where during each scan adjacent
items are compared and swapped if out of order. A scan which involves no
swapping indicates that the list is sorted.
5.28 Rewrite the following function using pointer arithmetic:
char* ReverseString (char *str)
{
int len = strlen(str);
char *result = newchar[len + 1];
for (register i =0; i <len; ++)
result[i] = str[len - i - 1];
result[len] ='\0;
return result;
}
80 C++ Essentials Copyright © 2005 PragSoft

5.29 Rewrite BubbleSort (from 5.27) so that it uses afunction pointer for comparison of
names.

5.30 Rewrite the following usng typedefs.

voi d (*Swap) (doubl e, doubl e);
char *tabl e[];

char *&narre;

usi gned | ong *val ues[10] [20] ;

www. pragsoft.com Chapter 5: Arrays, Pointers, and References 81

6. Classes

This chapter introduces the class congtruct of C++ for defining new data types. A
data type congsts of two things:

A concrete representation of the objects of the type.

A st of operations for manipulating the objects.

Added to these is the redtriction that, other than the designated operations, no
other operation should be able to manipulate the objects. For this reason, we often
say that the operations characterize the type, that is, they decide what can and
what cannot happen to the objects. For the same reason, proper data types as
such are often cdled abstract data types — abdract because the interna
representation of the objects is hidden from operations that do not belong to the
type.

A class definition congists of two parts. header and body. The class header
specifies the class name and its base classes. (The latter relates to derived classes
and is discussed in Chapter 8.) The class body defines the class members. Two
types of members are supported:

Data members have the syntax of variable definitions and specify the
representation of class objects.

Member functions have the syntax of function prototypes and specify the
class operations, also called the class inter face.

Class membersfall under one of three different access permission categories.
Public members are accessible by dl class users.

Private members are only accessible by the class members.

Protected members are only accessble by the class members and the

members of aderived class,

The data type defined by a dass is used in exactly the same way as a built-in
type.

82 C++ Essentials Copyright © 2005 PragSoft

A Simple Class

Listing 6.22

OO~ WNE

Annotation

Liging 6.22 shows the definition of a Smple class for representing points in two
dimensons

class Point {
int xVval, yval;

publ i c:
void SetPt (int, int);
void GfsetPt (int, int);

1 This line contains the class header and names the class as Point. A class
definition aways begins with the keyword cl ass, followed by the class name.
An open brace marks the beginning of the class body.

2 Thisline defines two data members, xVal and yVal , both of type i nt. The
default access permission for a class member is private. Both xVal and yVal
are therefore private.

3 This keyword specifies that from this point onward the class members are
public.

4-5 These two are public member functions. Both have two integer parameters
and avoid return type.

6 Thisbrace marksthe end of the class body.

The order in which the data and member functions of a class are presented is
largdy irrdlevant. The above class, for example, may be equivaently written as

class Point {
publ i c:
void SetPt (int, int);
void OGfsetPt (int, int);
private:
int xVval, yval;
b

The actud definition of the member functions is usudly not part of the class
and gppears separately. Listing 6.23 shows the separate definition of Set Pt and
Ofsetkt.

www. pragsoft.com Chapter 6: Classes 83

Listing 6.23

abhwNEk

QUOWoO~NO®

1

Annotation

void Point::SetPt (int x, int vy)
{
xVal
yVal

X,
Y

}

void Point::ffsetPt (int x, int y)
{
xVal += x;
yval +=y;

1 The definition of a cdlass member function is very smilar to a norma function.
The function name should be preceded by the class name and a double-colon.
Thisidentifies Set Pt asbeing amember of Poi nt . The function interface must
meatch its earlier interface definition within the class (i.e, take two integer
parameters and have the return type void).

3-4 Note how Set Pt (being a member of Poi nt) is free to refer to xVal and
yVal . Norn-member functions do not have this privilege.

Once acdassis defined in this way, its name denotes a new data type, dlowing
us to define variables of that type. For example:

Point pt; /1l pt is an object of class Point
pt. Set Pt (10, 20); /1l pt is set to (10, 20)
pt. dfsetPt(2,2); /1 pt becones (12, 22)

Member functions are caled using the dot notation: pt . Set Pt (10, 20) cdls
Set Pt for the object pt , thet is, pt isan implicit algument to Set Pt .

By meking xVal and yVal private members of the class, we have ensured that
auser of the class cannot manipulate them directly:

pt.xVal = 10; /1 illegal

Thiswill not compile.

At this stage, we should dearly distinguish between object and class. A class
denotes a type, of which there is only one. An object is an dement of a particular
type (class), of which there may be many. For example,

Point ptl, pt2, pt3;

defines three objects (pt1, pt2, and pt3) dl of the same class (Point).
Furthermore, operations of a class are applied to objects of that class, but never
the class itsdlf. A class is therefore a concept that has no concrete existence other
than that reflected by its objects. O

84

C++ Essentials Copyright © 2005 PragSoft

Inline Member Functions

Just as globa functions may be defined to be inline, so can the member functions of
aclass. In the class Poi nt, for example, both member functions are very short
(only two datements). Defining these to be inline improves the efficiency
condderably. A member function is defined to be inline by inserting the keyword
i nl i ne before its definition.

inline void Point::SetPt (int x,int vy)
{
xVal
yVal

X,
Y

}

An esser way of defining member functions to be inline is to include ther
definition inside the class.

class Point {
int xval, yval;
publ i c:
void SetPt (int x,int y) { xval =x; yval =vy; }
void GfsetPt (int x,int y) { xVal +=x; yval +=vy; }
b

Note that because the function body is included, no semicolon is needed after

the prototype. Furthermore, dl function parameters must be named.
!

www. pragsoft.com Chapter 6: Classes 85

Example: A Set Class

Listing 6.24

1

wWiN

4
5
6
7
8
9

10

11

12

13

14

15

16

17

18

Annotation

A et is an unordered collection of objects with no repetitions. This example shows
how a set may be defined as a class. For smplicity, we will redtrict ourselves to
sets of integers with a finite number of dements. Liding 6.24 shows the Set class

definition.

#i ncl ude <i ostream h>

const maxCard = 100;
enum Bool {false, true};

Enpt ySet
Menber
AddHE em
RvH em
Copy
Equal

I nt er sect
Uni on
Print

el ens[maxCar d] ;

card;

(voi d) { card = 0; }

(const int);
(const int);
(const int);
(Set&);

(Set&);

(Set& Set&;
(Set& Set&;
(void);

/]l set elenents
// set cardinality

class Set {
publ i c:
voi d
Bool
voi d
voi d
voi d
Bool
voi d
voi d
voi d
private:
i nt
i nt
1
2
6
7
8

MaxCar d denotes the maximum number of dements a set may have.

Enpt ySet clears the contents of the sat by setting its cardindlity to zero.
Menber checksif agiven number is an eement of the set.

AddH emadds a new eement to the sat. If the lement is aready in the st

then nothing happens. Otherwise, it is inserted. Should this result in an

overflow then the dement is not inserted.

9 RwH emremoves an exigding dement from the s, provided that dement is
dready in the st.

10 Copy copies one et to another. The parameter of this function is a reference
to the destination <.

11 Equal checksif two sets are equd. Two sets are equd if they contain exactly
the same dements (the order of which isimmaterid).

86

C++ Essentials

Copyright © 2005 PragSoft

12 Intersect compares two sets to produce a third set (denoted by its last
parameter) whose eements are in both sets. For example, the intersection of
{253} and {7,5,2} is{2,5}.

13 Uni on compares two sets to produce a third set (denoted by its last
parameter) whose elements are in ether or both sets. For example, the union
of {253} and {7,5,2} is{2,5,3,7}.

14 Print printsasat usng the conventiona mathematica notation. For example,
a set containing the numbers 5, 2, and 10 is printed as{5,2,10} .

16 The dementsof the set are represented by the el ens array.

17 The cardindity of the set is denoted by car d. Only the first card entries in
el ens are conddered to be vaid elements.

The separate definition of the member functions of a class is sometimes
referred to as the implementation of the class. The implementation of the Set
classisasfollows.

Bool Set::Menber (const int elen)
{
for (register i =0; i <card; +H)
if (elens[i] == elen
return true;
return fal se;

}

voi d Set::AddH em (const int elen

i f (Menber(elen)
return;
if (card < naxCard)
el ems[card++] = elem
el se
cout << "Set overflown";

}
void Set::RwHem (const int elen
{
for (register i = 0; i <card;, ++i)
if (elens[i] == elen) {
for (; i <card-1; ++) // shift elements |eft
elens[i] = elens[i+1];
--card;
}
}

void Set::Copy (Set &set)
{

for (register i =0; i <card;, +H)

www. pragsoft.com Chapter 6: Classes 87

set.elens[i] = elens[i];
set.card = card,;

}
Bool Set::Equal (Set &set)
{
if (card != set.card)
return fal se;
for (register i =0; i <card;, ++i)
if (!set.Mnber(elens[i]))
return fal se;
return true;
}

void Set::Intersect (Set &set, Set &res)
{
res.card = 0;
for (register i =0; i <card;, ++)
if (set.Menber(elens[i]))

res.elens[res.card++] = elens[i];

}

void Set::Union (Set &set, Set &res)
{
set . Copy(res);
for (register i =0; i <card;, ++)
res. AddE en{el ens[i]);

}
void Set::Print (void)
{
cout << "{";
for (int i =0; i <card-1; ++)
cout << elens[i] << ",";
if (card > 0) /1 no corma after the | ast el enent
cout << el ens[card-1];
cout << "}\n";
}

Thefollowing mai n function creates three Set objects and exercises some of

its member functions.

int nain (void)

Set sl, s2, s3;

sl.EnptySet(); s2.EnptySet(); s3.EnptySet();
sl1l. AddH en{10); s1. AddH en{20); sl1.AddH en{30); sl1.AddH en{40);
s2. AddH en{30); s2. AddH en(50); s2. AddH en{10); s2. AddH en{60);

cout << "sl1 =", sl.Print();
cout << "s2 ="; s2.Print();
s2. RvHE en{50); cout << "s2 - {50} = "; s2.Print();

if (sl.Menber(20)) cout << "20 is in sl\n";

88

C++ Essentials

Copyright © 2005 PragSoft

}

When run, the program will produce the following output:

sl.Intersect(s2,s3); cout << "sl intsec s2 =",
s1. Uhi on(s2,s3); cout << "s1 union s2 ="

if (!'sl. EBqual (s2)) cout << "s1 /= s2\n";
return O;

sl = {10, 20, 30, 40}

s2 = {30, 50, 10, 60}

s2 - {50} = {30, 10, 60}
20is in sl

sl intsec s2 = {10, 30}
sl union s2 = {30, 10, 60, 20, 40}
sl /=s2

s3.Print();
s3.Print();

www. pragsoft.com

Chapter 6: Classes 89

Constructors

It is possble to define and a the same time initidize objects of a dass. This is
supported by specid member functions called congtructors. A congtructor dways
has the same name as the cdlass itsdf. It never has an explicit return type. For
example,

class Point {
int xval, yval;
publ i c:
Point (int x,int y) {xvVal =x; yval =y;} // constructor
void GfsetPt (int,int);
b

is an dternative definition of the Poi nt class, where Set Pt has been replaced by a
congtructor, which in turn is defined to beinline.

Now we can define objects of type Poi nt and initidize them a once. Thisis
in fact compulsory for classes that contain congtructors that require arguments:

Point ptl = Point (10, 20);
Poi nt pt 2; /1 illegal!

The former can aso be specified in an abbreviated form.
Poi nt pt 1(10, 20) ;

A class may have more than one congtructor. To avoid ambiguity, however,
each of these must have a unique signature. For example,

class Point {
int xval, yval;

publ i c:
Point (int x, int y) { xval =x; yval =vy; }
Point (float, float); /1 pol ar coordi nat es
Poi nt (void) { xval =yval =0; } // origin
void GfsetPt (int, int);
};
Point::Point (float len, float angle) /1 polar coordinates
{
xVal = (int) (len * cos(angle));
yVal = (int) (len * sin(angle));
}
offers three different congtructors. An object of type Poi nt can be defined usng
any of these:
Poi nt pt 1(10, 20); /1 cartesian coordinates
Point pt2(60. 3, 3. 14); /1 polar coordinates
Poi nt pt 3; /1 origin

90 C++ Essentials Copyright © 2005 PragSoft

The Set cdlass can be improved by using a congtructor instead of Enpt ySet :

class Set {

publ i c:
Set (void) { card = 0; }
/...

b

This has the digtinct advantage that the programmer need no longer remember to
call Enpt ySet . The congtructor ensures that every setisinitialy empty.

The Set class can be further improved by giving the user control over the
maximum sSize of a s&t. To do this, we define el ens as an integer pointer rather
than an integer array. The condructor can then be given an argument which
Specifies the desired size. This means that naxCar d will no longer be the same for
dl Set objects and therfore needs to become a data member itsdlf:

class Set {
publ i c:
Set (const int size);
/...
private:
int *el ens; /] set elements
i nt nmaxCar d; /!l nmaximumcardinality
i nt card; /1 set cardinality
b

The congructor smply dlocates a dynamic array of the desred size and
initidizes maxCar d and car d accordingly:

Set::Set (const int size)

{
elems = new int[size];
maxCard = si ze;
card = 0;

}

It is now possible to define sets of different maximum sizes:
Set ages(10), heights(20), primes(100);

It isimportant to note that an object’ s congtructor is applied when the object is
created. This in turn depends on the object’s scope. For example, a global object
IS crested as soon as program execution commences, an automatic object is
created when its scope is entered; and a dynamic object is created when the new
operator is applied to it. O

www. pragsoft.com Chapter 6: Classes 91

Destructors

Just as a congtructor is used to initialize an object when it is created, a destructor is
used to clean up the object just before it is destroyed. A destructor always has the
same name as the classitsdf, but is preceded with a~ symbol. Unlike congtructors,
aclass may have a most one destructor. A destructor never takes any arguments
and has no explicit return type.

Destructors are generdly useful for classes which have pointer data members
which point to memory blocks dlocated by the class itsdf. In such cases it is
important to release member-alocated memory before the object is destroyed. A
destructor can do just that.

For example, our revised version of Set uses a dynamically-allocated array
for the el ens member. This memory should be released by a destructor:

class Set {
publ i c:
Set (const int size);
~Set (void) {delete elens;} // destructor
/...
private:
int *el ens; /] set elements
i nt nmaxCar d; /1l nmaximumcardinality
i nt card; /1 set cardinality

b
Now consider what happens when a Set is defined and used in afunction:

voi d Foo (void)

{
Set s(10);
/...

}

When Foo is cdled, the congtructor for s is invoked, dlocating storage for
s. el ens and initidizing its data members. Next the rest of the body of Foo is
executed. Findly, before Foo returns, the destructor for s is invoked, ddeting the
storage occupied by s. el ens. Hence, as far as storage dlocation is concerned, s
behaves judt like an automatic variable of a built-in type, which is crested when its
scope is entered and destroyed when its scope is | eft.

In generd, an object’s congructor is gpplied just before the object is
destroyed. This in turn depends on the object’s scope. For example, a global
object is destroyed when program execution is completed; an automatic object is
destroyed when its scope is left; and a dynamic object is destroyed when the
del et e operator isapplied to it. O

92 C++ Essentials Copyright © 2005 PragSoft

Friends

Occasiondly we may need to grant a function access to the nonpublic members of
aclass. Such an access is obtained by declaring the function a friend of the class.
There are two possible reasons for requiring this access:

It may be the only correct way of defining the function.

It may be necessary if the function isto be implemented efficiently.

Examples of the firs case will be provided in Chepter 7, when we discuss
overloaded input/output operators. An example of the second case is discussed
below.

Suppose that we have defined two variants of the Set class, one for sets of
integers and one for sets of reds:

class IntSet {

publ i c:
/...

private:
int el ens[maxCard];
int card;

|

class Real Set {

publ i c:
/...

private:
float el ens[maxCard];
int card;

|

We want to define a function, Set ToReal , which converts an integer set to a red
set. We can do this by making the function amember of | nt Set :

void IntSet:: Set ToReal (Real Set &set)

{
set. EnptySet () ;
for (register i =0; i <card;, ++)
set. AddH en{(float) elens[i]);
}

Although thisworks, the overhead of cdling AddE emfor every member of the set
may be unacceptable. The implementation can be improved if we could gain access
to the private members of both 1 nt Set and Real Set. This can be arranged by
declaring Set ToReal asafriend of Real Set .

class Real Set {
/...
friend void IntSet::Set ToReal (Real Set&);

www. pragsoft.com Chapter 6: Classes 93

void IntSet:: Set ToReal (Real Set &set)

{
set.card = card,;
for (register i =0; i <card; ++)
set.elens[i] = (float) elens[i];
}

The extreme case of having al member functions of a class A as friends of
another class B can be expressed in an abbreviated form:

class A
class B {
/...
friend class A /] abbreviated form

b

Another way of implementing Set ToReal is to define it as a globa function
which isafriend of both classes:

class IntSet {
/...
friend void Set ToReal (IntSet& Real Set&);

h
class Real Set {

/...

friend void Set ToReal (IntSet& Real Set&);
b
voi d Set ToReal (IntSet & Set, Real Set &rSet)
{

rSet.card =i Set.card;

for (int i =0; i <iSet.card;, ++)

rSet.elens[i] = (float) iSet.elens[i];

}

Although a friend declaration appears indde a class, that does not make the
function a member of that class. In generd, the position of afriend declaration in a
classisirrdevant: whether it gppearsin the private, protected, or the public section,

it has the same meaning.
O

94 C++ Essentials Copyright © 2005 PragSoft

Default Arguments

Aswith globd functions, a member function of a class may have default arguments.
The same rules gpply: al default arguments should be traling arguments, and the
argument should be an expression congsting of objects defined within the scope in
which the class appears.

For example, a congtructor for the Poi nt class may use default arguments to
provide more variations of the way a Poi nt object may be defined:

class Point {
int xval, yval;
publ i c:
Point (int x =0, int y=0);
/...
b

Given this condructor, the following definitions are dl vadid:

Poi nt pl; /1l same as: pl(0, 0)
Poi nt p2(10); /1l same as: p2(10, 0)
Poi nt p3(10, 20);

Cadess use of default arguments can lead to undesirable ambiguity. For
example, given the class

class Point {
int xval, yval;
publ i c:
Point (int x =0, int y =0);
Point (float x =0, float y = 0); // polar coordinates

...
b
the following definition will be rgected as ambiguous, because it matches both
congtructors:
Poi nt p; /1 anbi guous!

www. pragsoft.com Chapter 6: Classes 95

Implicit Member Argument

When a dass member function is caled, it receives an implicit argument which
denotes the particular object (of the class) for which the function is invoked. For
example, in

Poi nt pt (10, 20);
pt. FfsetPt(2,2);

pt isanimplicit agument to O f set Pt . Within the body of the member function,
one can refer to thisimplicit argument explicitly ast hi s, which denotes a pointer to
the object for which the member is invoked. Using this, OfsetPt can be
rewritten as.

Point::OfsetPt (int x, int y)
{

this->xVal += x; /1 equivalent to: xVal += x;
this->yval +=vy; /1l equivalent to: yval +=vy;
}

Use of this in this paticular example is redundant. There are, however,
programming cases where the use of the thi s pointer is essentid. We will see
examples of such casesin Chapter 7, when discussing overloaded operators.

Thet hi s pointer can be used for referring to member functions in exactly the
same way asit is used for data members. It is important to bear in mind, however,
that t hi s is defined for use within member functions of aclass only. In particular, it

isundefined for globd functions (including globd friend functions).
!

96

C++ Essentials Copyright © 2005 PragSoft

Scope Operator

When cdling a member function, we usudly use an abbreviated syntax. For
example:

pt. dfsetPt(2,2); /] abbreviated form

Thisisequivadent to the full form:

pt.Point:: O fsetPt(2,2); /] full form

The full form uses the binary scope operator : : to indicate that Ff setPt is a
member of Poi nt .

In some Situations, using the scope operator is essential. For example, the case
where the name of a class member is hidden by a locd variabdle (eg., member
function parameter) can be overcome using the scope operator:

class Point {

publ i c:
Point (int x, int vy) { Point::x =x; Point::y =vy; }
/...

private:
int x, vy;

}

Here x and y in the congructor (inner scope) hide x and y in the class (outer

scope). The latter are referred to explicitly asPoi nt : : x and Poi nt : @ y.
O

www. pragsoft.com Chapter 6: Classes 97

Member Initialization List

There are two ways of initidizing the data members of a class. The first approach
involves initidizing the data members usng assgnments in the body of a
congtructor. For example:

class | mage {
publ i c:
Image (const int w const int h);

private:

int wdth;

int height;

/...
H

I mage: : I mage (const int w, const int h)

wdth = w
hei ght = h;
...

}

The second approach uses a member initialization list in the definition of a
congtructor. For example:

class | mage {
publ i c:
Image (const int w const int h);

private:

int wdth;

int height;

/...
H

I mage: : I mage (const int w, const int h) : wdth(w, height(h)

1. ..
}

The effect of this declardtion is that wi dt h is initidized to wand hei ght is
initidized to h. The only difference between this approach and the previous one is
that here members are initidized befor e the body of the constructor is executed.

A member initidization lig may be used for initidizing any data member of a
class. It is dways placed between the constructor header and body. A colon is
used to separate it from the header. It should consist of a comma-separated list of

data members whose initid value appears within apair of brackets.
O

98 C++ Essentials Copyright © 2005 PragSoft

Constant Members

A class data member may defined as congtant. For example:

class | mage {
const int Wi dt h;
const int hei ght ;
/...

b

However, data member congtants cannot be initidized using the same syntax as for
other congtants:

class I mage {

const int w dth = 256; [l illegal initializer!
const int hei ght = 168; [l illegal initializer!
/...
b
The correct way to initidize a data member congtant is through a member
initidization list:
class I mage {
publ i c:
Image (const int w const int h);
private:

const int wi dt h;
const int hei ght ;
/...

¥
I mage: : Il mage (const int w, const int h) : wdth(w, height(h)

I...
}

As one would expect, no member function is dlowed to assign to a congtant data
member.

A conglant data member is not gppropriate for defining the dimension of an
array data member. For example, in

class Set {
publ i c:
Set (void) : maxCard(10) { card = 0; }
/...
private:
const nmaxCar d;
i nt el ens[maxCar d] ; /1 illegal!l
i nt card;
b

www. pragsoft.com Chapter 6: Classes 99

the array el ens will be rgected by the compiler for not having a constant
dimengion. The reason for this being that naxCar d is not bound to a vaue during
compilation, but when the program is run and the congtructor is invoked.

Member functions may aso be defined as congtant. This is used to specify
which member functions of a class may be invoked for a constant object. For
example,

class Set {
publ i c:
Set (voi d) { card = 0; }
Bool Menber (const int) const;
voi d AddE em (const int);

...
}

Bool Set:: Menber (const int elen) const
{

}

...

defines Menber as a constant member function. To do so, the keyword const is
inserted after the function header, both insde the class and in the function definition.

A congtant object can only be modified by the constant member functions of
the class:

const Set s;
s. AddH en(10) ; /1 illegal: AddH emnot a const nenber
s. Menber (10) ; /1 ok

Given that a constant member function is alowed to be invoked for constant
objects, it would be illegd for it to attempt to modify any of the class data
members.

Congtructors and destructors need never be defined as constant members,
since they have permission to operate on constant objects. They are aso exempted
from the above rule and can assign to a data member of a constant object, unless

the data member isitsdlf a constant.
O

100

C++ Essentials Copyright © 2005 PragSoft

Static Members

A data member of a class can be defined to be gtatic. This ensures that there will
be exactly one copy of the member, shared by al objects of the class. For
example, consider a W ndow class which represents windows on a bitmap display:

cl ass Wndow {
static Wndow *first; /1 linked-l1ist of all w ndows
W ndow *next ; /1 pointer to next w ndow
/...

b

Here, no matter how many objects of type W ndow are defined, there will be only
one ingtance of first. Like other datic variables, a datic data member is by
default initidized to 0. It can be initidized to an arbitrary vaue in the same scope
where the member function definitions appesar:

Wndow *Wndow : first = &myW ndow,

The dternative is to make such variables globd, but this is exactly what Sdtic
members are intended to avoid; by including the varigble in a class, we can ensure
that it will be inaccessible to anything outsde the class.

Member functions can dso be defined to be datic. Semanticdly, a detic
member function is like a globd function which is a friend of the dass but
inaccessible outside the class. It does not receive an implicit argument and hence
cannot refer to thi s. Staic member functions are useful for defining call-back
routines whose parameter lists are predetermined and outside the control of the
programmer.

For example, the W ndow class might use a cdl-back function for repainting
exposed areas of the window:

cl ass Wndow {
/...
static void PaintProc (Event *event); /1 call-back

b

Because static members are shared and do not rely on the t hi s pointer, they
are best referred to using the class::member syntax. For example, first and
Pai nt Proc would be referred to as Wndow: : fi rst and Wndow : Pai nt Proc.
Public tatic members can be referred to using this syntax by nonmember functions

(eg., globd functions).
O

www. pragsoft.com Chapter 6: Classes 101

Member Pointers

Recal how a function pointer was used in Chapter 5 to pass the address of a
comparison function to a search function. It is possible to obtain and manipulate the
address of a member function of a classin a amilar fashion. As before, the ideais
to make afunction more flexible by making it independent of another function.

The syntax for defining a pointer to a member function is dightly more
complicated, since the class name must dso be included in the function pointer
type. For example,

typedef int (Table::*Conpare)(const char*, const char*);

defines a member function pointer type caled Conpar e for a class called Tabl e.
Thistype will match the address of any member function of Tabl e which takes two
constant character pointers and returnsan i nt . Conpar e may be used for passng
apointer to a Sear ch member of Tabl e:

class Tabl e {

publ i c:
Table (const int slots);

i nt Search (char *item Conpare conp);

i nt CaseSesi tiveConp (const char*, const char*);

i nt Nornal i zedComp (const char*, const char*);
private:

int slots;

char **entries;
b

The definition of Tabl e includes two sample comparison member functions which
can be passed to Sear ch. Sear ch has to use a dightly complicated syntax for
invoking the comparison function via conp:

int Table::Search (char *item Conpare conp)

{
int bot =0;
int top =slots - 1;
int md, cnp;
while (bot <= top) {
md = (bot +top) / 2
if ((cnp = (this->*conp)(item entries[md])) == 0)
return md; /1 return itemindex
elseif (cnp <0)
top = md - 1, /] restrict search to | ower half
el se
bot = md + 1; /] restrict search to upper half
}
return -1; /1 not found
}

102 C++ Essentials Copyright © 2005 PragSoft

Note that conp can only be invoked via a Tabl e object (the t hi s pointer is
used in this case). None of the following atempts, though seemingly reasonable,
will work:

(*conp) (item entries[md]); /1l illegal: no class object!
(Tabl e::*conp) (item entries[md]); // illegal: no class object!
this->conp(item entries[md]); /1 illegal: need brackets!

The lagt attempt will be interpreted as.

this->(conp(item entries[md])); // unintended precedence!

Therefore the brackets around t hi s- >* conp are necessary. Using a Tabl e object
ingtead of t hi s will require the fallowing syntax:

Tabl e tab(10);
(tab.*conp)(item entries[md])

Sear ch can be cdled and passed ether of the two comparison member
functionsof Tabl e. For example:

t ab. Search(" Sydney", Tabl e:: Normal i zedGonp) ;

The address of a data member can be obtained using the same syntax as for a
member function. For example,

int Table::*n = &Tabl e::slots;
int m= this->*n;
int p=tab. *n;

The above class member pointer syntax applies to dl members except for
datic. Static members are essentidly globa entities whose scope has been limited
to aclass. Pointers to static members use the conventional syntax of global entities.

In generd, the same protection rules gpply as before: to take the address of a
class member (data or function) one should have access to it. For example, a
function which does not have access to the private members of a class cannot take

the address of any of those members.
O

www. pragsoft.com Chapter 6: Classes 103

References Members

A class data member may defined as reference. For example:

class | mage {
int wdth;
int height;
int &ni dt hRef;
/...

|

As with data member congtants, a data member reference cannot be initiaized
using the same syntax as for other references:

class | mage {

int wdth;
int height;
int &idthRef = width; /1 illegal!
/...
¥
The correct way to initidize a data member reference is through a member
initidization lig:
class | mage {
publ i c:
Image (const int w const int h);
private:
int wdth;
int height;
int & dt hRef;
/...
b

I mage: : I mage (const int w, const int h) : w dthRef(w dth)

1. ..
}

Thiscauseswi dt hRef to be areferencefor wi dt h.

104 C++ Essentials Copyright © 2005 PragSoft

Class Object Members

A data member of a class may be of a user-defined type, that is, an object of
another class. For example, a Rect angl e class may be defined using two Poi nt
data members which represent the top-left and bottom-right corners of the

rectangle:
class Rectangl e {
publ i c:
Rectangle (int left, int top, int right, int botton);
/...
private:

Poi nt topLeft;
Poi nt bot R ght ;

|

The congtructor for Rect angl e should dso initidize the two object members of
the dass. Assuming that Poi nt has a condructor, this is done by including
topLeft and bot R ght in the member initidization list of the condructor for
Rect angl e:

Rectangl e:: Rectangle (int left, int top, int right, int botton)
. topLeft(left,top), botR ght(right,bottomn
{

}

If the congtructor for Poi nt takes no parameters, or if it has default arguments for
adl of its parameters, then the above member initidization list may be omitted. Of
course, the congtructor is till implicitly caled.

The order of initidization is dways as follows. Frg, the congructor for
topLeft isinvoked, followed by the congructor for bot R ght, and findly the
congtructor for Rect angl e itself. Object destruction aways follows the opposite
direction. Firgt the destructor for Rect angl e (if any) is invoked, followed by the
destructor for bot R ght, and findly for t opLeft. The reason that topLeft is
initidized before bot R ght is not thet it gopears fird in the member initidization
list, but because it appears before bot R ght in the dass itsdf. Therefore, defining
the congtructor as follows would not change the initidization (or destruction) order:

Rectangl e:: Rectangle (int left, int top, int right, int botton)
: botRght(right,bottom), topLeft(left,top)
{

}

www. pragsoft.com Chapter 6: Classes 105

Object Arrays

An aray of a user-defined type is defined and used much in the same way as an
array of a built-in type. For example, a pentagon can be defined as an array of 5
points:

Poi nt pent agon[5] ;

This definition assumes tha Poi nt has an ‘argument-less congtructor (i.e., one
which can be invoked without arguments). The congtructor is gpplied to each
element of the array.

The array can dso be initidized usng a normd aray initidizer. Each entry in
the initidization list would invoke the congtructor with the desired arguments. When
the initidizer has less entries than the array dimension, the remaining dements are
initidized by the argument-less congtructor. For example,

Poi nt pentagon[5] = {
Poi nt (10, 20), Point (10, 30), Point (20, 30), Point (30, 20)
b

initidizes the firgt four dements of pent agon to explicit points, and the last dement
isinitidized to (0,0).

When the congtructor can be invoked with a sngle argument, it is sufficient to
just specify the argument. For example,

Set sets[4] = {10, 20, 20, 30};
Is an abbreviated verson of:
Set sets[4] = {Set(10), Set(20), Set(20), Set(30)};
An array of objects can aso be creasted dynamically using new
Poi nt *petagon = new Poi nt[5] ;
When the array isfindly ddeted usng del et e, apair of [] should be included:

del ete [] pentagon; /1 destroys all array el ements

Unlessthe [] isincluded, del et e will have no way of knowing that pent agon
denotes an array of points and not just a single point. The destructor (if any) is
applied to the ements of the array in reverse order before the array is deleted.
Omitting the [] will cause the destructor to be applied to just the first element of
the array:

del et e pent agon; /1 destroys only the first el enent!

106 C++ Essentials Copyright © 2005 PragSoft

Since the objects of a dynamic array cannot be explicitly initidized at the time
of creation, the class must have an argument-less congructor to handle the implicit
initidization. When this implict initidization is insufficdent, the programmer can
explictly renitidize any of the dements later:

pent agon[0] . Poi nt (10, 20);
pent agon[1] . Poi nt (10, 30);
/...

Dynamic object arays are useful in circumstances where we cannot
predetermine the Sze of the array. For example, a generd polygon class has no
way of knowing in advance how many vertices a polygon may have:

cl ass Pol ygon {

publ i c:

/...
private:

Poi nt *vertices; /! the vertices

int nVerti ces; /! the nunber of vertices
b

www. pragsoft.com Chapter 6: Classes 107

Class Scope

A class introduces a class scope much in the same way a function (or block)
introduces alocal scope. All the class members belong to the class scope and thus
hide entitieswith identica names in the enclosing scope. For example, in

int fork (void); /1 systemfork

cl ass Process {
int fork (void);
/...

¥

the member function f or k hides the globa system function f or k. The former can
refer to the latter using the unary scope operator:

int Process::fork (void)

{
int pid=::fork(); /1 use global systemfork

...
}
A dassitsdf may be defined at any one of three possible scopes:.

At the globa scope. Thisleads to a global class, whereby it can be referred
to by al other scopes. The grest mgority of C++ classes (including dl the
examples presented so far in this chapter) are defined at the global scope.

At the class scope of another class. This leads to a nested class, where a
classis contained by another class.

At the local scope of ablock or function. This leads to a local class, where
the classis completely contained by ablock or function.

A nested class is useful when a class is used only by one other class. For

example,
class Rectangl e { /1 a nested cl ass
publ i c:
Rectangle (int, int, int, int);
/..
private:
class Point {
publ i c:
Poi nt (int, int);
private:
int x, v;
1

Poi nt topLeft, botR ght;

108 C++ Essentials Copyright © 2005 PragSoft

defines Poi nt as nested by Rect angl e. The member functions of Poi nt may be
defined ether inlineingde the Poi nt class or a the globa scope. The latter would

require further qudification of the member function names by preceding them with
Rectangl e: :

Rectangle::Point::Point (int x, inty)
{

}

A nested class may 4ill be accessed outsde its enclosing class by fully
qualifying the class name. The following, for example, would be vaid a any scope
(assuming that Poi nt ismade public within Rect angl e):

...

Rectangl e:: Point pt(1,1);

A locd dass is ussful when a class is used by only one function — be it a
globa function or amember function — or even just one block. For example,

voi d Render (I mage & nage)

{
class ol orTabl e {

publ i c:
Col or Tabl e (voi d) {I1* ... *}
AddEntry (int r, int g, int b) {/1* ... %}
/...

h

Col or Tabl e col ors;
/...

}

defines Gol or Tabl e asaclasslocal to Render .
Unlike a nested class, a locd class is not accessible outside the scope within
which it is defined. The following, therefore, would beillegd at the globd scope:

Col or Tabl e ct; /1 undefi ned!

A locd class must be completely defined insde the scope in which it appears.

All of its functions members, therefore, need to be defined inline insde the class.

This implies that a locd scope is not suitable for defining anything but very smple
classes.

O

www. pragsoft.com Chapter 6: Classes 109

Structures and Unions

A dructure isadassdl of whose members are by default public. (Remember that
al of the members of a class are by default private)) Structures are defined using
the same syntax as classes, except that the keyword st ruct is used instead of
cl ass. For example,

struct Point {

Poi nt (int, int);
void OFf set Pt (int, int);
int x, v;

b

isequivaent to:
class Point {
publ i c:
Poi nt (int, int);
void OfsetPt (int, int);
int x, v;

b

The struct condruct originated in C, where it could only contan data
members. It has been retained mainly for backward compatibility reasons. In C, a
dructure can have an initidizer with a syntax Smilar to thet of an array. C++ dlows
such initidizers for sructures and classes dl of whose data members are public:

cl ass Enpl oyee {

publ i c:
char *nane;
i nt age;

doubl e sal ary;

b
Enpl oyee enp = {"Jack", 24, 38952.25};

The initidizer consggts of vaues which are assgned to the data members of the
dructure (or class) in the order they gppear. This syle of initidizetion is largey
superseded by constructors. Furthermore, it cannot be used with a class that has a
congtructor.

A union is a class dl of whose data members are mapped to the same
address within its object (rather than sequentialy asisthe casein aclass). Thesize
of an object of aunion is, therefore, the Sze of its largest data member.

The main use of unionsis for Stuations where an object may assume vaues of
different types, but only one a a time. For example, consder an interpreter for a
smple programming language, cdled P, which supports a number of data types
such as integers, redls, strings, and ligts. A vaue in this language may be defined to
be of the type:

110

C++ Essentials Copyright © 2005 PragSoft

uni on Val ue {

| ong i nt eger;
doubl e real;
char *string;
Pai r l'ist;

...
}

where Pai r isitsdf auser-defined type for creating ligs:

class Pair {
Val ue *head;
Value *tail;
/...

|

Asauming that a | ong is 4 bytes, a doubl e 8 bytes, and a pointer 4 bytes, an
object of type Val ue would be exactly 8 bytes, i.e, the same as the Sze of a
doubl e or aPai r object (the latter being equal to two pointers).

An object in P can be represented by the class,

class hject {

private:
enum (bj Type {inthj, real (j, strChj, listhj};
(bj Type type; /1 object type
Value val; /1 object val ue

/...
1

where t ype provides a way of recording what type of vaue the object currently
has. For example, when t ype isset to str(bj, val . stri ng is used for referring
toitsvaue.

Because of the unique way in which its data members are mapped to memoary,
aunion may not have a dtatic data member or a data member which requires a
congtructor.

Like a gtructure, dl of the members of a union are by default public. The
keywords pri vat e, publ i ¢, and pr ot ect ed may be used inddea struct or a
uni on in exactly the same way they are used ingde a class for defining private,

public, and protected members.
O

www. pragsoft.com Chapter 6: Classes 111

Bit Fields

Figure 6.9

It is sometimes desirable to directly control an object at the bit level, so that as
many individua data items as possible can be packed into a bit stream without
worrying about byte or word boundaries.

For example, in data. communication, data is transferred in discrete units called
packets. In addition to the user data that it carries, each packet also contains a
header which is comprised of network-rdated information for managing the
transmisson of the packet across the network. To minimize the cost of
transmission, it is desirable to minimize the space taken by the header. Figure 6.9
illustrates how the header fields are packed into adjacent bitsto achieve this.

Header fields of a packet.
acknowledge sequenceNo

| HNNERNNR

0 W,
type channel moreData

These fields can be expressed as bit field data members of a Packet class. A
bit field may be defined to be of typei nt or unsi gned i nt:

typedef unsigned int Bit;

cl ass Packet {

Bit type D2 /1 2 bits wde
Bit acknow edge : 1, /1 1 bit wide
Bit channel 4, /1l 4 bits wde
Bit sequenceNo 4, /1l 4 bite wde
Bit noreData L /1 1 bit wde
/...

|

A bit field is referred to in exactly the same way as any other data member.
Because a bit field does not necessarily start on a byte boundary, itisillegd to take
Its address. For the same reason, a bit field cannot be defined as satic.

Use of enumerations can make working with bit fields easer. For example,
given the enumerdtions

enum Packet Type {dat aPack, control Pack, supervi soryPack};

enum Bool {fal se, true};
we can write:
Packet p;
p. type = control Pack;
p. acknow edge = true; O

112

C++ Essentials Copyright © 2005 PragSoft

Exercises

6.31 Explan why the Set parameters of the Set member functions are declared as
references.
6.32 Define a class named Conpl ex for representing complex numbers. A complex

number hasthe generd form a+ ib, where ais the red part and b is the imaginary
part (i Sandsfor imaginary). Complex arithmetic rules are asfollows:

(@+ib) + (c +id)
(a+ib) — (c + id)
(@+ib) * (c +id)

(@+0c) +i(b+d)
(@+c)—i(b+d)
(ac —bd) + i(bc + ad)

Define these operations as member functions of Conpl ex.

6.33 Define a class named Menu which uses a linkedHlist of strings to represent a menu
of options. Use a nested class, (pt i on, to represent the set elements. Define a
congtructor, a destructor, and the following member functions for Menu:

I nsert which inserts a new option a a given podtion. Provide a default
argument so that the item is gppended to the end.

el et e which deletes an existing option.

Choose which displays the menu and invites the user to choose an option.

6.34 Redefinethe Set class as a linked-list so that there would be no regtriction on the
number of elements a set may have. Use a nested class, Bl enent , to represent the
St elements.

6.35 Define a class named Sequence for storing sorted strings. Define a congtructor, a

destructor, and the following member functions for Sequence:
I nsert which insertsanew gring into its sort position.

Del et e which deletes an existing String.

Fi nd which searches the sequence for a given string and returns true if it finds
it, and false otherwise.

Pri nt which prints the sequence strings.

6.36 Define class named Bi nTr ee for storing sorted strings as a binary tree. Define the
same set of member functions as for Sequence from the previous exercise.

www. pragsoft.com Chapter 6: Classes 113

6.37 Define amember function for Bi nTr ee which converts a sequence to a binary tree,
as afriend of Sequence. Use this function to define a congtructor for Bi nTree
which takes a sequence as argument.

6.38 Add an integer ID data member to the Menu class (Exercise 6.33) s0 that dl menu
objects are sequentidly numbered, starting from 0. Define an inline member
function which returns the ID. How will you keep track of the last dlocated ID?

6.39 Modify the Menu class so that an option can itsdf be a menu, thereby alowing

nested menus.
O

114 C++ Essentials Copyright © 2005 PragSoft

7. Overloading

This chapter discusses the overloading of functions and operatorsin C++. The term
overloading means ‘providing multiple definitions of’. Overloading of functions
involves defining ditinct functions which share the same name, each of which has a
unique signature. Function overloading is gppropriate for:

Defining functions which essentialy do the same thing, but operate on different
data types.

Providing dternate interfaces to the same function.

Function overloading is purdly a programming convenience.

Operators are smilar to functions in that they take operands (arguments) and
return a value. Mogt of the built-in C++ operators are dready overloaded. For
example, the + operator can be used to add two integers, two reds, or two
addresses. Therefore, it has multiple definitions. The built-in definitions of the
operators are redtricted to built-in types. Additiona definitions can be provided by
the programmer, so that they can dso operate on user-defined types. Each
additiona definition isimplemented by a function.

The overloading of operators will be illustrated usng a number of smple
classes. We will discuss how type conversion rules can be used to reduce the need
for multiple overloadings of the same operator. We will present examples of
overloading anumber of popular operators, including << and >> for 10, [] and ()
for container classes, and the pointer operators. We will aso discuss memberwise
initidization and assgnment, and the importance of their correct implementation in
classes which use dynamicaly-alocated data members.

Unlike functions and operators, classes cannot be overloaded; each class must
have a unique name. However, as we will see in Chapter 8, classes can be dtered
and extended through afacility caled inheritance. Also functions and classes can
be written as templates, s0 that they become independent of the data types they
employ. We will discuss templatesin Chapter 9.

www. pragsoft.com Chapter 7: Overloading 115

Function Overloading

Congder afunction, Get Ti ne, which returns in its parameter(s) the current time of
the day, and suppose that we require two variants of this function: one which
returns the time as seconds from midnight, and one which returns the time as hours,
minutes, and seconds. Given that these two functions serve the same purpose, there
is no reason for them to have different names.

C++ dlows functions to be overloaded, that is, the same function to have
more than one definition:

long GetTine (void); /1 seconds from m dni ght
void GetTine (int &wours, int &inutes, int &econds);

When Get Ti ne is cdled, the compiler compares the number and type of
arguments in the cdl againg the definitions of Get Ti me and chooses the one that
matches the cdl. For example:

int h, m s;
long t = GetTine(); /1 matches Get Ti ne(voi d)
GetTine(h, m s); /1l matches GetTine(int& int& int&;

To avoid ambiguity, each definition of an overloaded function must have a
unigue Sgnature.
Member functions of a class may aso be overloaded:

class Tine {
/...
long GetTine (void); /1 seconds from nidnight
void GetTine (int &wours, int &mnutes, int &econds);
¥

Function overloading is ussful for obtaining flavors that are not possble using
default arguments aone. Overloaded functions may aso have default arguments.

void Error (int errCode, char *errMsg = "");
void Error (char *errMg);

116 C++ Essentials Copyright © 2005 PragSoft

Operator Overloading

C++ dlows the programmer to define additiond meanings for its predefined
operators by overloading them. For example, we can overload the + and -
operators for adding and subtracting Poi nt objects:

class Point {

publ i c:
Point (int x, int vy) {Point::x =x; Point::y =vy;}
Point operator + (Point &) {return Point(x + p.x,y + p.y);}
Poi nt operator - (Point &) {return Point(x - p.Xx,y - p.y);}
private:
int x, y;
b

After this definition, + and - can be used for adding and subtracting points, much in
the same way as they are used for adding and subtracting numbers:

Poi nt pl1(10, 20), p2(10, 20);
Point p3 = pl + p2;
Point p4 = pl - p2;

The above overloading of + and - uses member functions. Alternatively, an
operator may be overloaded globdly:

class Point {
publ i c:
Point (int x, int vy) {Point::x =x; Point::y =vy,;}
friend Point operator + (Point &, Point &q)
{return Point(p.x + q.X,p.y + q.Y);}
friend Point operator - (Point &, Point &q)
{return Point(p.x - q.X,p.y - q.¥);}
private:
int x, vy;
b

The use of an overloaded operator is equivaent to an explicit cdl to the
function which implementsiit. For example:
oper at or +(pl, p2) /1l is equivalent to: pl + p2

In generd, to overload a predefined operator | , we define a function named
operatorl .If | isabinary operator:

oper at or| must take exactly one argument if defined as a class member, or
two arguments if defined globally.

However, if | isaunary operator:

www. pragsoft.com Chapter 7: Overloading 117

oper at or| must take no arguments if defined as a member function, or one
argument if defined globaly.

Table 7.10 summarizes the C++ operators which can be overloaded. The
remaining five operators cannot be overloaded:

Lx i ?: si zeof /! not overl oadabl e

Figure 7.10 Overloadable operators.

ey [+ - [[F [~ & [+~ [--10 >]-
>*
ne del ete
W
Binary: + | - * / % | & | | Ns< | >>
— += .= | = (V7= = |: N= | g >>
= [I=] < | > |<=|>=[&|]|]| [[1 |0 |,

A drictly unary operator (e.g., ~) cannot be overloaded as binary, nor can a
grictly binary operator (e.g., =) be overloaded as unary.

C++ does not support the definition of new operator tokens, because this can
lead to ambiguity. Furthermore, the precedence rules for the predefined operators
is fixed and cannot be dtered. For example, no matter how you overload *, it will
aways have a higher precedence than +.

Operators ++ and -- can be overloaded as prefix as wel as podtfix.
Equivaence rules do not hold for overloaded operators. For example, overloading
+ does not affect +=, unlessthe latter is aso explicitly overloaded. Operators - >, =,
[1,and () canonly be overloaded as member functions, and not globdly.

To avoid the copying of large objects when passing them to an overloaded
operator, references should be used. Pointers are not suitable for this purpose

because an overloaded operator cannot operate exclusively on pointers.
O

118 C++ Essentials Copyright © 2005 PragSoft

Example:

Set Operators

Listing 7.25
1

wWiN

RPRRPRRPRRPRRRRERE
©CONOURAWNROWOONO U N

The Set classwas introduced in Chapter 6. Mogt of the Set member functions are

better defined as overloaded operators. Listing 7.25 illudrates.

#i ncl ude <i ostream h>

const maxCard = 100;
enum Bool {false, true};

class Set {
publ i c:
Set (voi d) { card = 0; }

friend Bool operator & (const int, Set&; // menbership
friend Bool operator == (Set& Set&); /]l equality
friend Bool operator != (Set& Set&); /1 inequality
friend Set operator * (Set& Set&); /] intersection
friend Set operator + (Set& Set&); /1 union
/...

voi d AddH em (const int elen;
voi d Copy (Set &set);
voi d Print (voi d);

private:

i nt el ens[maxCar d] ; /] set elements

i nt card,; /] set cardinality
};

Here, we have decided to define the operator functions as globd friends. They
could have just as eadily been defined as member functions. The implementation of

these functionsis as follow.

Bool operator & (const int elem Set &set)

{
for (register i =0; i < set.card; ++i)
if (elem== set.elens[i])
return true;
return fal se;
}
Bool operator == (Set &setl, Set &set2)
{
if (setl.card != set2.card)
return fal se;
for (register i =0; i <setl.card; ++)
if (!(setl.elens[i] & set2)) /1 use overl oaded &
return fal se;
return true;
}
Bool operator != (Set &setl, Set &set?2)
{
return !(setl == set?2); /1 use overl oaded ==
}

www. pragsoft.com Chapter 7: Overloading

119

Set operator * (Set &setl, Set &set?2)

{
Set res;
for (register i = 0; i <setl.card; ++)
if (setl.elens[i] & set2) /1 use overloaded &
res.elens[res.card++] = setl.elens[i];
return res;
}
Set operator + (Set &setl, Set &set?2)
{
Set res;
set 1. Copy(res);
for (register i = 0; i <set2. card; ++)
res. AddH en{set 2. el ens[i]);
return res;
}

The syntax for using these operators is arguably nesater than those of the
functions they replace, asillugrated by the following mai n function:

int main (void)

{
Set sl, s2, s3;
sl1l. AddH en{10); s1. AddH en{20); sl1.AddH en{30); sl1.AddH en{40);
s2. AddH en{30); s2. AddH en(50); s2. AddH en{10); s2. AddH en{60);
cout << "s1 =", sl.Print();
cout << "s2 = "; s2.Print();
if (20 & s1) cout << "20 is in sl\n";
cout << "slintsec s2 ="; (sl * s2).Print();
cout << "sl union s2 ="; (sl + s2).Print();
if (sl!=s2) cout << "sl1l /= s2\n";
return O;
}

When run, the program will produce the following output:

sl = {10, 20, 30, 40}

s2 = {30, 50, 10, 60}

20isin sl

sl intsec s2 = {10, 30}

sl union s2 = {10, 20, 30, 40, 50, 60}
sl /=s2

120 C++ Essentials Copyright © 2005 PragSoft

Type Conversion

The norma built-in type converson rules of the language aso apply to overloaded
functions and operators. For example, in

if ("a & set)
/...

thefirst operand of &(i.e.," @') isimplicitly converted from char to i nt, because
overloaded & expectsits first operand to be of typei nt .

Any other type converson required in addition to these must be explicitly
defined by the programmer. For example, suppose we want to overload + for the
Poi nt type so that it can be used to add two points, or to add an integer vaue to
both coordinates of a point:

class Point {
Ir...
friend Point operator + (Point, Point);
friend Point operator + (int, Point);
friend Point operator + (Point, int);
¥

To make + commuitative, we have defined two functions for adding an integer to a
point: one for when the integer is the first operand, and one for when the integer is
the second operand. It should be obvious that if we start congidering other typesin
additiontoi nt , this gpproach will ultimately lead to an unmanagegble variations of
the operator.

A better approach is to use a congructor to convert the object to the same
type as the class itsdlf so that one overloaded operator can handle the job. In this
case, we heed a congtructor which takes an i nt , pecifying both coordinates of a
point:

class Point {
...
Point (int Xx) { Point::x = Point::y = Xx; }
friend Point operator + (Point, Point);

b

For congtructors of one argument, one need not explicitly call the congtructor:
Point p = 10; /1 equivalent to: Point p(10);

Hence, it is possible to write expressons that involve variables or congtants of type
Poi nt andi nt udng the + operator.

Poi nt p(10,20), g = 0;
g=p +5; /]l equivalent to: g =p + Point(5);

www. pragsoft.com Chapter 7: Overloading 121

Here, 5 isfirst converted to atemporary Poi nt object and then added to p. The
temporary object is then destroyed. The overdl effect is an implicit type
conversonfromi nt to Poi nt . Thefind vaueof q istherefore (15,25).

What if we want to do the opposite conversion, from the class type to another
type? In this case, congtructors cannot be used because they dways return an
object of the class to which they belong. Instead, one can define a member function
which explicitly converts the object to the desired type.

For example, given a Rect angl e class, we can define a type conversion
function which converts a rectangle to a point, by overloading the type operator
Poi nt in Rect angl e:

class Rectangl e {
publ i c:
Rectangle (int left, int top, int right, int botton);
Rectangl e (Point &, Point &g);
/...
operator Point () {return botR ght - topLeft;}

private:
Poi nt topLeft;
Poi nt bot R ght ;

b

This operator is defined to convert a rectangle to a point, whose coordinates
represent the width and height of the rectangle. Therefore, in the code fragment

Poi nt p(5, 9);
Rectangle r (10, 10, 20, 30);
r+p;

rectangle r isfirg implicitly converted to a Poi nt object by the type conversion
operator, and then added to p.

The type converson Poi nt can aso be applied explicitly usng the norma
type cast notation. For example:

Point(r); /1 explicit type-cast to a Point
(Point)r; /1 explicit type-cast to a Point

In generd, given a user-defined type X and another (built-in or user-defined)
typeY:

A congructor defined for X which takes a angle argument of type Y will

implicitly convert Y objects to X objects when needed.

Overloading the type operator Y in X will implicitly convert X objects to Y
objects when needed.

class X {
/...
X(Y&; /1l convert Yto X

122 C++ Essentials Copyright © 2005 PragSoft

operator Y (); // convert XtoY
b
One of the disadvantages of user-defined type converson methods is thet,
unless they are used sparingly, they can lead to programs whose behaviors can be
very difficult to predict. There is dso the additiond risk of cresting ambiguity.
Ambiguity occurs when the compiler has more than one option open to it for
applying user-defined type converson rules, and therefore unable to choose. Al
such cases are reported as errors by the compiler.
To illustrate possible ambiguities that can occur, suppose that we aso define a
type converson congtructor for Rect angl e (which takes a Poi nt argument) as
well as overloading the + and - operators:

class Rectangl e {

publ i c:
Rectangle (int left, int top, int right, int botton);
Rectangl e (Point &, Point &q);
Rectangl e (Point &p);

operator Point () {return botR ght - topLeft;}
friend Rectangl e operator + (Rectangle &, Rectangle &);
friend Rectangl e operator - (Rectangle &, Rectangle &);

private:
Poi nt topLeft;
Poi nt bot R ght ;

h

Now, in
Poi nt p(5,5);
Rectangle r (10, 10, 20, 30);
r o+ p;

r + p can beinterpreted in two ways. Either as

r + Rectangl e(p) /1 yields a Rectangl e
or as.

Point(r) +p /1 yields a Point

Unless the programmer resolves the ambiguity by explicit type converson, this will

be regjected by the compiler.
O

www. pragsoft.com Chapter 7: Overloading 123

Example: Binary Number Class

Ligting 7.26 defines a class for representing 16-bit binary numbers as sequences of

0 and 1 characters.

Listing 7.26

1
2

#i ncl ude <i ostream h>
#i ncl ude <string. h>

3 |int const binSze = 16;
class Binary {

publ i c:

B nary
B nary
operator + (const
operator int ();
Print (void);

(const
friend Binary

voi d
private:

char bi t s[bi nSi ze] ;
}.

4
5
6
7
8
9

10

11

12

13

(unsigned int);

char*);

Binary, const B nary);
/1 type conversion

/] binary quantity

Annotation

representation.

This congtructor produces a binary number from its bit pattern.
This condructor converts a podtive integer to its equivadent binary

The + operator is overloaded for adding two binary numbers. Addition is done

bit by bit. For smplicity, no attempt is made to detect overflows.

object.
10
12

This type conversion operator is used to convert a Bi nary object to an i nt

Thisfunction smply prints the bit pattern of a binary number.
Thisarray is used to hold the 0 and 1 bits of the 16-bit quantity as characters.

The implementation of these functionsis asfollows

Binary::Binary (const char *nun)

{
int iSc =strlen(nun - 1;
int iDest = binSze - 1;
while (iSrc >= 0 & i Dest >= 0) /1 copy bits
bits[iDest--] = (nunmiSc--] =="'0 ?2'0 : '1');
while (iDest >= 0) /1 pad left with zeros
bits[iDest--] ='0";
}

Binary::Binary (unsigned int nun)

{

124 C++ Essentials

Copyright © 2005 PragSoft

for (register i =hbinSze- 1, i >=0; --i) {
bits[i] = (num%2 ==07?"'0 : '1);
num >>= 1;

}

Binary operator + (const Binary nl, const Binary n2)
{

unsigned carry = 0;

unsi gned val ue;

Binary res = "0";

for (register i = hinSize- 1, i >0; --i) {
value = (nl. bits[i] =="'0" 2 0: 1) +
(n2.bits[i] =="'0" ?20: 1) + carry;
res.bits[i] = (value %2 ==07?"'0 : '1);
carry = value >> 1,
}

return res;

}

Binary::operator int ()

{

unsi gned val ue = 0;

for (register i =0; i < binSze;, ++)
value = (value << 1) + (bits[i] =="'0" ? 0 : 1);
return val ue;

}

void Binary::Print (void)

{
char str[binS ze + 1];
strncpy(str, bits, binS ze);
str[binSi ze] = "\0";
cout << str << '\n';

}

Thefollowing mai n function creates two objects of type Bi nary and tests the
+ operator.

nain ()

{

"01011";
"11010";

Bi nary nl

Bi nary n2

nl. Print();

n2.Print();

(n1 +n2).Print();

cout << nl + Binary(5) << '\n'; /! add and then convert to
i nt

cout << nl - 5<<'\n'; /1 convert n2 to int and then
subt r act

}

www. pragsoft.com Chapter 7: Overloading 125

Thelagt two lines of nmai n behave completdy differently. The first of these converts
5to Binary, does the addition, and then converts the Bi nary result to int,
before sending it to cout . Thisisequivdent to:

cout << (int) Binary::operator+(n2,Binary(5)) << '\n';

The second converts n1 to i nt (because - is not defined for Bi nary), performs
the subtraction, and then send the result to cout . Thisis equivaent to:

cout << ((int) n2) - 5 <<'\n";

In either case, the user-defined type converson operator is applied implicitly.
The output produced by the program is evidence that the conversions are
performed correctly:

0000000000001011
0000000000011010
0000000000100101
16

6

126 C++ Essentials Copyright © 2005 PragSoft

Overloading << for Output

The ample and uniform treatment of output for built-in types is easily extended to
user-defined types by further overloading the << operator. For any given user-
defined type T, we can define an oper at or << function which outputs objects of

type T:

ostrean& operator << (ostrean& T&);

The first parameter must be areference to ost r eamso that multiple uses of << can
be concatenated. The second parameter need not be a reference, but this is more
efficient for large objects.

For example, instead of the Bi nary class's Pri nt member function, we can
overload the << operator for the class. Because the first operand of << must be an
ost r eamobject, it cannot be overloaded as a member function. It should therefore
be defined as aglobd function:

class Binary {
/...
friend ostrean® operator << (ostrean® Binary&);

|
ostream& operator << (ostream &s, Binary &n)
{
char str[binS ze + 1];
strncpy(str, n.bits, binS ze);
str[binSize] ="'\0;
cout << str;
return os;
}

Given this definition, << can be used for the output of binary numbers in a manner
identical to its use for the built-in types. For example,

Binary nl1 = "01011", n2 = "11010";
cout << nl<<" +" <«<<nl<<" =" <<nl+n2<<'\n;

will produce the following output:

0000000000001011 + 0000000000011010 = 0000000000100101

In addition to its amplicity and degance, this Syle of output diminates the
burden of remembering the name of the output function for each user-defined type.
Without the use of overloaded <<, the lagt example would have to be written as
(assuming that \ n has been removed from Pri nt):

Binary nl1 = "01011", n2 = "11010";
nl. Print(); cout << " + " n2.Print();
cout << " ="; (nl+ n2).Print(); cout << '\n'; O

www. pragsoft.com Chapter 7: Overloading 127

Overloading >> for Input

Input of user-defined types is facilitated by overloading the >> operator, in a
manner amilar to theway << is overloaded. For any given user-defined type T, we
can define an oper at or >> function which inputs objects of type T:

i strean& operator >> (istrean® T&);

Thefirgst parameter must be areferencetoi st r eamso that multiple uses of >> can
be concatenated. The second parameter must be a reference, since it will be
modified by the function.

Continuing with the Bi nary class example, we overload the >> operator for
the input of bit streams. Again, because the firs operand of >> must be an
i st r eamobject, it cannot be overloaded as a member function:

class Binary {
/...
friend istrean® operator >> (istrean® Binary&);

|
i strean& operator >> (istream& s, Binary &n)
{
char str[binS ze + 1];
cin >> str;
n = Binary(str); /1 use the constructor for sinplicity
return is;
}

Given this definition, >> can be used for the input of binary numbers in a manner
identical to its use for the built-in types. For example,

Binary n;
cin >> n;

will reed a binary number from the keyboard into to n.

128 C++ Essentials Copyright © 2005 PragSoft

Overloading []

Liding 7.27 defines a Smple associative vector class. An associative vector is a
one-dimensiona array in which eements can be looked up by their contents rather
than their pogtion in the array. In AssocVec, each dement has a string name (via
which it can be looked up) and an associated integer vaue.

Listing 7.27

1 | #i ncl ude <i ostream h>

2 | #include <string. h>

3 | class AssocVec {

4 | public:

5 AssocVec (const int dim;

6 ~AssocVec (void);

7 int& operator [] (const char *idx);

8 | private:

9 struct VecH em {
10 char *i ndex;
11 i nt val ue;
12 } *el ens; /1 vector elenents
13 i nt dim /1 vector dinmension
14 i nt used; /1 elements used so far
15 | };

Annotation

5 The congructor creates an associative vector of the dimension specified by its
argument.

7 The overloaded [] operator is used for accessng vector eements. The
function which overloads [] must have exactly one parameter. Given a gtring
index, it searches the vector for a match. If a matching index is found then a
reference to its associated value is returned. Otherwise, a new dement is
created and areference to this vaueis returned.

12 The vector dements are represented by a dynamic array of VecH em
structures. Each vector eement consists of a string (denoted by i ndex) and an
integer vaue (denoted by val ue).

The implementation of the member functionsis asfollows

AssocVec: : AssocVec (const int dim

{
AssocVec::dim= dim
used = 0O;
el emrs = new VecH enjdi nj;
}
AssocVec: : ~AssocVec (voi d)
{

www. pragsoft.com Chapter 7: Overloading 129

for (register i =0; i < used;, ++i)
del ete el ens[i].index;
delete [] el ens;

}
i nt & AssocVec: :operator [] (const char *idx)
{
for (register i = 0; i < used;, ++i) /1 search existing
el enent s
if (strcenp(idx,elens[i].index) == 0)
return el ens[i].val ue;
if (used < dimé&& /] create new el enent
(el ens[used].index = new char[strlen(idx)+1]) !=0) {
strcpy(el ems[used] . i ndex, i dx);
el ems[used] . val ue = used + 1;
return el ens[used++] . val ue;
}
static int dumy = O;
return durmy;
}

Note that, because AssocVec: : oper at or[] must return avdid reference, a
reference to a dummy datic integer is returned when the vector is full or when new
fals

A reference expression is an Ivalue and hence can appear on both sides of an
assgnment. If a function returns a reference then a cal to that function can be
assigned to. Thisiswhy the return type of AssocVec: : operat or[] is defined to
be areference.

Usng AssocVec we can now creste associdtive vectors that behave very
much like normd vectors:

AssocVec count (5);

count["appl e"] = 5;

count["orange"] = 10;

count["fruit"] = count["apple"] + count["orange"];

Thiswill set count ["fruit"] to 15.

130 C++ Essentials Copyright © 2005 PragSoft

Overloading ()

Listing 7.28

1

QUOWO~NOOUPA,WN

Annotation

Liging 7.28 defines a matrix class. A matrix is a table of vaues (very smilar to a
two-dimensiona array) whose size is denoted by the number of rows and columns
in the table. An example of asmple 2 x 3 matrix would be:

M= |10 20 30
21 52 19

The standard mathematical notation for referring to matrix elements uses brackets.
For example, lement 20 of M (i.e, in the first row and second column) is referred
to as M(1,2). Matrix algebra provides a set of operations for manipulating matrices,
which includes addition, subtraction, and multiplication.

#i ncl ude <i ostream h>
class Matrix {
publ i c:
Mat ri x (const short rows, const short cols);
~Matri x (voi d) {del ete el ens;}
doubl e& operator () (const short row, const short col);
friend ostrean& operator << (ostrean® Matrix&);
friend Matrix operator + (Matrix& Matrix&);
friend Matrix operator - (Matrix& Mtrix&);
friend Matrix operator * (Matrix& Mtrix&);
private:
const short rows; [matrix rows
const short cols; /1 matrix col ums
doubl e *el ens; /1 matrix elements
1

4 The congructor creates a matrix of the size specified by its arguments, dl of
whose dements are initialized to O.

6 The overloaded () operator is used for accessng matrix eements. The
function which overloads () may have zero or more parameters. It returns a
reference to the specified dement’svaue.

7 Theoverloaded << isused for printing a matrix in tabular form.
8-10 These overloaded operators provide basic matrix operations.
14 The matrix eements are represented by a dynamic array of doubl es.

www. pragsoft.com Chapter 7: Overloading 131

The implementation of the firg three member functionsis asfollows.

Matrix::Matrix (const short r, const short c¢) : rows(r), cols(c)

{
el enrs = new doubl e[rows * col s];
}
doubl e& Matrix::operator () (const short row, const short col)
{
static double dummy = 0.0;
return (row>=1 & row <= rows &% col >= 1 & col <= cols)
? elens[(row - 1)*cols + (col - 1)]
: durmmy;
}
ostrean& operator << (ostream &os, Matrix &m
{
for (register r =1, r <= mrows; ++) {
for (int ¢ =1; ¢c <= mcols; ++c)
oS << n.(r’C) << non
0s << '\n';
}
return os;
}

As before, because Matri x: : operat or () must return a vaid reference, a
reference to a dummy gtatic doubl e is returned when the specified dement does
not exist. The following code fragment illustrates that matrix eements are Ivaues.

Matrix nm(2,3);
n1,1) = 10; n1,2) = 20; n(1,3) = 30;
n2,1) = 15; n(2,2) = 25; n(2,3) = 35;

cout << m<< '\n';

Thiswill produce the following output:

10 20 30
15 25 35

132 C++ Essentials Copyright © 2005 PragSoft

Memberwise Initialization

Consder the following definition of the overloaded + operator for Mat ri x:

Matrix operator + (Matrix &, Matrix &q)

{

Matrix n{p.rows, p.cols);

if (p.rows == g.rows & p.cols == qg.cols)

for (register r = 1; r <= p.rows; ++r)
for (register ¢c =1, ¢ <= p.cols; ++c)
n{r,c) =p(r,c) +q(r,c);

return m

}

This function returns a matrix object which is initidized to m The initidization is
handled by an interna congtructor which the compiler automaticaly generates for

Matri x:
Matrix::Matrix (const Matrix &) : rows(mrows), cols(mcols)
{
el ens = mel ens;
}

This form of initidization is cdled memberwise initialization because the specia
congdructor initidizes the object member by member. If the data members of the
object being initidized are themselves objects of another class, then those are dso
memberwise initidized, etc.

Asareault of the default memberwise initidization, the el ens data member of
both objects will point to the same dynamicaly-alocated block. However, mis
destroyed upon the function returning. Hence the destructor deletes the block
pointed to by m el ens, leaving the returned object’s el ens data member pointing
to an invaid block! This ultimatdly leads to a runtime falure (typicaly a bus error).
Figure 7.11 illudtrates.

Figure 7.11 The danger of the default memberwise initialization of objects with
pointers.

A memberwise copy of m is made After m is destroyed
Matrix m
rows
cols
elems
Memberwise) Memberwise)
Copy of m Dynamic Copy of m Invalid
rows Block rows Block
cols cols
elems elems

Memberwise initidization occursin the following Stuations

www. pragsoft.com Chapter 7: Overloading 133

When defining and initidizing an object in a declaration datement that uses
another object asitsinitidizer, eg., Mat ri x n = min Foo below.

When passing an object argument to a function (not applicable to a reference
or pointer argument), e.g., min Foo below.

When returning an object vaue from a function (not applicable to a reference
or pointer return vaue), eg., ret urn nin Foo below.

Matrix Foo (Matrix mn /1 menberw se copy argunent to m

{

Matrix n =m /1 menberw se copy mto n

/...

return n; /1 menberwi se copy n and return copy
}

It should be obvious that default memberwise initidization is generdly
adequate for classes which have no pointer data members (eg., Point). The
problems caused by the default memberwise initidization of other classes can be
avoided by explicitly defining the congtructor in charge of memberwise initidization.
For any given dass X, the congtructor always has the form:

X X (const X&) ;
For example, for the Mat ri x class, this may be defined as follows:

class Matrix {
Matrix (const Matrix&);

/...
H
Matrix::Matrix (const Matrix &) : rows(mrows), cols(mcols)
{
int n =rows * cols;
el ens = new doubl e[n] ; /] sane size
for (register i =0; i <n; ++) /1 copy elements
elens[i] = melens[i];
}

134 C++ Essentials Copyright © 2005 PragSoft

Memberwise Assignment

Objects of the same class are assigned to one another by an interna overloading of
the = operator which is automatically generated by the compiler. For example, to
handle the assgnment in

Matrix m(2,2), n(2,2);
/...
m= n;

the compiler automaticaly generates the following interna function:

Matrix& Matrix::operator = (const Matrix &m

{
rows = mMrows;
cols = mcols;
el enrs = mel ens;
}

This is identical in its gpproach to membewise initidization and is caled
memberwise assgnment. It suffers from exactly the same problems, which in
turn can be overcome by explicitly overloading the = operator. For example, for
the Mat ri x class, thefallowing overloading of = would be appropriate:

Matrix& Matrix::operator = (const Matrix &m

{
if (roms == mrows &% cols == mcol s) { /1 nust match
int n =rows * cols;
for (register i = 0; i <n; ++) /1 copy elements
elems[i] = melens[i];
}
return *this;
}

In generd, for any given class X, the = operator is overloaded by the following
member of X:

X& X :operator = (X&)

Operator = can only be overloaded as a member, and not globally.

www. pragsoft.com Chapter 7: Overloading 135

Overloading new and delete

Objects of different classes usudly have different szes and frequency of usage. As
a reault, they impose different memory requirements. Smal objects, in paticular,
are not efficiently handled by the default versons of newand del et e. Every block
alocated by new carries some overhead used for housekeeping purposes. For
large objects this is not sgnificant, but for small objects the overhead may be even
bigger than the block itsdf. In addition, having too many smal blocks can saverdy
dow down subsequent dlocation and deallocation. The performance of a program
that dynamicaly creates many smdl objects can be sgnificantly improved by using
asmpler memory management strategy for those objects.

The dynamic storage management operators new and del ete can be
overloaded for a dlass, in which case they override the globa definition of these
operators when used for objects of that class.

As an example, suppose we wish to overload newand del et e for the Poi nt
class, so that Poi nt objects are dlocated from an array:

#i ncl ude <stddef. h>
#i ncl ude <i ostream h>

const int maxPoints = 512;

class Point {

publ i c:
/...
voi d* operator new (size_t bytes);
void operator delete (void *ptr, size t bytes);
private:
int xval, yval;
static union B ock {
i nt xy[2];
Bl ock *next;
} *bl ocks; /1l points to our freestore
static Bl ock *freelList; [l free-list of linked bl ocks
static int used; /1 blocks used so far

|

The type name si ze_t is defined in st ddef. h. New should dways return a
voi d*. The parameter of new denotes the size of the block to be alocated (in
bytes). The corresponding argument is dways automaticaly passed by the
compiler. The first parameter of del et e denotes the block to be deleted. The
second parameter is optiona and denotes the sze of the dlocated block. The
corresponding arguments are automatically passed by the compiler.

Sincebl ocks, freeLi st and used are datic they do not affect the Sze of a
Poi nt object (it is ill two integers). These are initidized asfollows:

Point:: Bl ock *Point::blocks = new Bl ock[maxPoi nt s] ;

136 C++ Essentials Copyright © 2005 PragSoft

Point::Bl ock *Point::freeList = 0;
i nt Poi nt::used = 0O;

New takes the next avalable block from bl ocks and returns its address.
Del ete frees a block by insating it in front of the linked-li denoted by
freeLi st. When used reaches naxPoi nt s, new removes and returns the firs
block in the linked-list, but fails (returns 0) when the linked-list is empty:

voi d* Point::operator new (size t bytes)

{
Bl ock *res = freeli st;
return used < naxPoi nts
? &bl ocks[used++])
: (res==0 2?0
: (freeList = freeLi st->next, res));
}

voi d Point::operator delete (void *ptr, size t bytes)

((Block*) ptr)->next = freelist;
freeList = (Bl ock*) ptr;
}

Poi nt : : operat or newand Poi nt : : operat or del et e are invoked only
for Poi nt objects. Caling new with any other type as argument will invoke the
globd definition of new, even if the call occurs insde a member function of Poi nt .

For example:
Point *pt = new Point(1,1); /1 calls Point::operator new
char *str = new char[10]; /1 calls ::operator new
del ete pt; /1 calls Point::operator delete
del ete str; /1 calls ::operator delete

Even when newand del et e are overloaded for a class, globa newand del et e
are used when creating and destroying object arrays.

Poi nt *points = new Poi nt[5]; /1 calls ::operator new
/...
delete [] points; /1 calls ::operator delete

The functions which overload newand del et e for a class are always assumed
by the compiler to be static, which means that they will not have accessto thet hi s
pointer and therefore the nongtatic class members. This is because when these
operators are invoked for an object of the class, the object does not exist: new is
invoked before the object is constructed, and del et e is cdled after it has been

destroyed.
O

www. pragsoft.com Chapter 7: Overloading 137

Overloading ->, *, and &

It is possible to divert the flow of control to a user-defined function before a pointer
to an object is dereferenced using - > or *, or before the address of an object is
obtained using & This can be used to do some extra pointer processing, and is
facilitated by overloading unary operators- >, *, and &

For classes that do not overload - >, this operator is dways binary: the left
operand is a pointer to a class object and the right operand is a class member
name. When the left operand of - > is an object or reference of type X (but not
pointer), X is expected to have overloaded - > as unary. In this case, - > is fird
applied to the |eft operand to produce aresult p. If p isapointer to aclass Y then p
Is used as the left operand of binary - > and the right operand is expected to be a
member of Y. Otherwise, p is used as the left operand of unary - > and the whole
procedure is repeated for class Y. Congder the following classes that overload - >:

class A {
/...
B& operator -> (void);

|

class B {
/...
Poi nt* operator -> (void);

b
The effect of applying - > to an object of type A

A obj;
int i = obj->xVal;

IS the successive gpplication of overloaded - >in Aand B:
int i = (B :operator->(A :operator->(0obj)))->xVal;

In other words, A : oper at or - > is gpplied to obj to give p, B: : oper at or - > is
gpplied to p to give g, and sSince g is a pointer to Poi nt, the find result is g-
>xVal .

Unary operators * and & can adso be overloaded so that the semantic
correspondence between - >, *, and &is preserved.

As an example, condder alibrary system which represents a book record as a
raw sring of the following format:

"9faut hor\ 090t i t | e\ 0%publ i sher\ 0%xci t y\ 0%Aol urre\ 0%year\ O\ n*

138

C++ Essentials Copyright © 2005 PragSoft

Each fidd garts with afidd specifier (e.g., %A specifies an author) and ends with a
null character (i.e., \ 0). The fields can appear in any order. Also, some fields may
be missing from arecord, in which case a default value must be used.

For efficiency reasons we may want to keep the datain this format but use the
following structure whenever we need to access the fields of arecord:

struct Book {

char
char
char
char
char
short
short

|

*raw, /1 raw format (kept for reference)
*aut hor ;

*title;

*publ i sher;

*city;

vol ;

year;

The default field vaues are denoted by a globa Book variable:

Book defBook = {

"raw,

|

"Author?", "Title?", "Publisher?*, "dty?", 0, O

We now define a class for representing raw records, and overload the unary
pointer operators to map araw record to a Book structure whenever necessary.

#i ncl ude <i ostream h>
#incl ude <stdlib. h> /1 needed for atoi() bel ow

int const cacheS ze = 10;

cl ass RawBook {

publ i c:

Book*
Book&
Book*
private:
Book*

char

static
static
static

b

RawBook (char *str) { data = str; }
operator -> (void);
operator * (void);
operator & (void);

RawToBook (voi d);

*dat a;

Book *cache; /1l cache nenory

short curr; /] current record in cache
short used; /'l nunber of used cache records

To reduce the frequency of mappings from RawBook to Book, we have used a
smple cache memory of 10 records. The corresponding static members are
initidized asfollows:

Book * RawBook: : cache
short RawBook: : curr
short RawBook: : used

new Book[cacheS ze] ;

www. pragsoft.com

Chapter 7: Overloading 139

The private member function RawToBook searches the cache for a RawBook
and returns a pointer to its corresponding Book dructure. If the book is not in the
cache, RawToBook |oads the book at the current position in the cache:

Book* RawBook: : RawToBook (voi d)

{
char *str = data;
for (register i =0; i <used;, ++i) // search cache
if (data == cache[i].raw
return cache + i;
curr = used < cacheS ze ? used++ /! update curr and used
: (curr <9 ? ++curr : 0);
Book *bk = cache + curr; /1 the book
*bk = def Book; /1 set default val ues
bk->raw = dat a;
for (;) {
while (*str++ 1="9%) /1 skip to next specifier
switch (*str++) { /I get afield
case 'A: bk->author = str; br eak;
case 'T: bk->title = str; br eak;
case 'P : bk->publisher = str; break;
case 'C: bk->city = str; br eak;
case 'V : bk->vol = atoi(str); break;
case 'Y : bk->year = atoi(str); break;
}
while (*str++ 1="\0") /1l skiptill end of field
i f (;‘str == '\n") break; /1 end of record
}
return bk;
}

The overloaded operators ->, *, and & ae essly defined in terms of
RawToBook:

Book* RawBook: : operator -> (void) {return RawToBook(); }
Book& RawBook: : operator * (void) {return *RawToBook();}
Book* RawBook::operator & (void) {return RawToBook(); }

The identicd definitions for - > and & should not be surprising Snce - > is unary in
this context and semanticaly equivaent to &

The following test case demonstrates that the operators behave as expected. It
sets up two book records and prints each using different operators.

main ()

RawBook r1(" %A Peters\ 0% B ue Earth\ 0%Phedr a\ 0%Sydney\ 0%
Y1981\ 0\ n");
RawBook r2(" %Pr egnancy\ 0%\F. Jackson\ 091987\ 0%M | es\ O\ n");
cout << r1->aut hor <", " << rl->title <", "
<< rl->publisher << ", " << rl->city <", "

140 C++ Essentials Copyright © 2005 PragSoft

<< (*r1).vol <", " << (*rl).year << '\n';

Book *bp = & 2; /1l note use of &

cout << bp->aut hor <", " << bp->title <", "
<< bp->publisher << ", " << bp->city <", "
<< bp->vol << ", " << bp->year <«<'\n';

}
It will produce the following outpuit:

A Peters, Blue Earth, Phedra, Sydney, 0, 1981
F. Jackson, Pregnancy, Mles, Gty?, 0, 1987

www. pragsoft.com Chapter 7: Overloading 141

Overloading ++ and --

The auto increment and auto decrement operators can be overloaded in both prefix
and pogtfix form. To distinguish between the two, the postfix verson is specified to
take an extra integer argument. For example, the prefix and podtfix versons of ++
may be overloaded for the Bi nary classasfollows:

class Binary {
/...
friend Binary operator ++ (Binary&); /1 prefix
friend Binary operator ++ (Binary& int); /1 postfix
b

Although we have chosen to define these as globd friend functions, they can
aso be defined as member functions. Both are eadly defined in terms of the +
operator defined earlier:

Binary operator ++ (Binary &n) [l prefix
{

return n = n + Binary(l);
}
Binary operator ++ (Binary &, int) /1 postfix
{

Binary m= n;

n=n+Bnary(l);

return m
}

Note that we have smply ignored the extra parameter of the postfix verson. When
this operator is used, the compiler automatically supplies a default argument for it.
The following code fragment exercises both versons of the operator:

Binary nl = "01011";
Binary n2 = "11010";
cout << ++nl << '\n';
cout << n2++ << '\n';
cout << n2 << '\n';

It will produce the following output:

0000000000001100
0000000000011010
0000000000011011

The prefix and pogifix versons of -- may be overloaded in exactly the same

way.
O

142 C++ Essentials Copyright © 2005 PragSoft

Exercises

7.40

741

7.42

7.43

7.44

Write overloaded versions of a Max function which compares two integers, two
redls, or two sirings, and returnsthe ‘larger’ one.

Overload the following two operators for the Set class:

Operator - which gives the difference of two sats (eg. s- t gives a st
consgting of those dements of swhicharenotint).

Operator <= which checksif aset is contained by another (eg., s<=t istrueif
dl thedementsof saredsoint).

Overload the following two operators for the Bi nar y class:

Operator - which gives the difference of two binary vdues For smplicity,
assume that the first operand is always greater than the second operand.

Operator [] which indexes a bit by its podtion and returnsits value as a0 or
1 integer.

Sparse matrices are used in a number of numericad methods (e.g., finite eement
andyds). A sparse matrix is one which has the great mgority of its dements st to
zero. In practice, sparse matrices of Szesupto 500 © 500 are not uncommon. On
a machine which uses a 64-bit representation for reds, soring such a matrix as an
array would require 2 megabytes of storage. A more economic representation
would record only nonzero eements together with their postions in the matrix.
Define a SparseMatri x class which uses a linked-list to record only nonzero
elements, and overload the +, - , and * operators for it. Also define an appropriate
memberwise initidization congructor and memberwise assgnment operator for the
class.

Complete the implementation of the following String class. Note that two

versons of the condructor and = are required, one for initidizing/assigning to a
String usngachar *, and one for memberwise initiaization/assgnment. Operator

[1 should index adtring character using its pogition. Operator + should concatenate
two grings.

class String {

publ i c:
String (const char*);
String (const String&);
String (const short);
~String (void);

String& oper at or
String& oper at or

(const char*);
(const String&;

www. pragsoft.com Chapter 7: Overloading 143

char & operator [] (const short);

i nt Lengt h (voi d) {return(len);}
friend String operator + (const String& const String&);
friend ostrean& operator <<(ostrean®& String&;

private:
char *chars; /1l string characters
short | en; /1 length of string
};
7.45 A bit vector is a vector with binary ements, that is, each dement iseither a0 or a

1. Smal bit vectors are conveniently represented by unsigned integers. For
example, an unsi gned char can represent a bit vector of 8 eements. Larger bit
vectors can be defined as arays of such smaler bit vectors. Complete the
implementation of the Bi t vec class, as defined below. It should alow bit vectors
of any Sze to be created and manipulated using the associated operators.

enum Bool {false, true};
typedef unsigned char uchar;

class BitVec {

publ i c:
Bi t Vec (const short dim;
Bi t Vec (const char* bhits);
Bi t Vec (const BitVec&;
~Bi t Vec (voi d) { delete vec; }
Bt Vec& operator = (const BitVec&;
Bt Vec& operator &= (const BitVec&;
B tVec& operator |= (const BitVec&;
Bt Vec& operator "= (const BitVec&);

Bit\Vec& operator <<= (const short);
Bi tVec& operator >>= (const short);

i nt operator [] (const short idx);
voi d Set (const short idx);
voi d Reset (const short idx);

BitVec operator ~ (void);

BitVec operator & (const BitVec&);
BitVec operator | (const BitVec&);
Bit\Vec operator " (const BitVec&;
BitVec operator << (const short n);
BitVec operator >> (const short n);

Bool operator == (const BitVec&;
Bool operator != (const BitVec&);
friend ostrean& operator << (ostrean& BitVec&);
private:
uchar *vec; /1 vector of 8*bytes hits
short bytes; /1 bytes in the vector
b O

144 C++ Essentials Copyright © 2005 PragSoft

8. Derived Classes

In practice, most classes are not entirely unique, but rather variations of existing
ones. Congder, for example, a class named RecFi | e which represents a file of
records, and another class named Sor t edRecFi | e which represents a sorted file
of records. These two classes would have much in common. For example, they
would have smilar member functionssuch as | nsert, Del et e, and Fi nd, as well
as Smilar data members. In fact, Sort edRecFi | e would be a specidized verson
of RecFi | e with the added property that its records are organized in sorted order.
Most of the member functions in both classes would therefore be identical, while a
few which depend on the fact that file is sorted would be different. For example,
Fi nd would be different in Sort edRecFi | e because it can take advantage of the
fact that the file is sorted to perform a binary search instead of the linear search
performed by the Fi nd member of RecFi | e.

Given the shared properties of these two classes, it would be tedious to have
to define them independently. Clearly this would lead to considerable duplication of
code. The code would not only take longer to write it would also be harder to
maintain: a change to any of the shared properties would have to be consgtently
applied to both classes.

Object-oriented programming provides a facility caled inheritance to
address this problem. Under inheritance, a class can inherit the properties of an
exiding class. Inheritance makes it possible to define a variation of a class without
redefining the new class from scratch. Shared properties are defined only once, and
reused as often as desired.

In C++, inheritance is supported by derived classes. A derived dass is like
an ordinary class, except that its definition is based on one or more existing classes,
caled base classes. A derived class can share sdlected properties (function as
well as data members) of its base classes, but makes no changes to the definition of
any of its base classes. A derived class can itself be the base class of another
derived class. The inheritance relationship between the classes of a program is
cdled aclass hierarchy.

A derived dassisaso cdled a subclass, because it becomes a subordinate of
the base class in the hierarchy. Smilarly, a base class may be cdled a superclass,
because from it many other classes may be derived.

www. pragsoft.com Chapter 8: Derived Classes 145

An illustrative Class

We will define two classes for the purpose of illugtrating a number of programming
concepts in later sections of this chapter. The two classes are defined in Listing
8.29 and support the creation of adirectory of personal contacts.

Listing 8.29
1 | #i ncl ude <i ostream h>
2 | #include <string. h>
3 | class Contact {
4 | public:
5 Cont act (const char *narre,
6 const char *address, const char *tel);
7 ~Cont act (void);
8 const char* Nane (voi d) const {return nane;}
9 const char* Address (voi d) const {return address;}
10 const char* Tel (voi d) const {return tel;}
11 | friend ostrean& operator << (ostrean® Contactg&);
12 | private:
13 char *nane; /1 contact nare
14 char *addr ess; /1 contact address
15 char *tel; /1 contact tel ephone nunber
16 | };
(A I e e TP
18 | class ContactDr {
19 | public:
20 ContactDir (const int naxS ze);
21 ~ContactD r(void);
22 voi d I nsert (const Contact&);
23 voi d Del ete (const char *nane);
24 Cont act * Fi nd (const char *nane);
25 | friend ostrean& operator <<(ostrean& ContactDr&);
26 | private:
27 int Lookup (const char *nane);
28 Contact **contacts; // list of contacts
29 i nt dirS ze; /1l current directory size
30 i nt maxS ze; /1 max directory size
31 |}
Annotation

3 (ontact captures the details (i.e., name, address, and telephone number) of a
persona contact.

18 Contact D r dlowsusto insart into, delete from, and search alist of persona
contacts.

146 C++ Essentials Copyright © 2005 PragSoft

22 Insert insartsanew contact into the directory. Thiswill overwrite an existing
contact (if any) with identica name.

23 Del et e ddetes a contact (if any) whose name matches a given name.

24 F nd returns a pointer to a contact (if any) whose name matches a given
name.

27 Lookup returns the dot index of a contact whose name matches a given name.
If none exigs then Lookup returns the index of the dot where such an entry
should be inserted. Lookup is defined as private because it is an auxiliary
functionused only by | nsert, Del et e, and Fi nd.

The implementation of the member function and friendsis as follows:

Contact:: Contact (const char *nane,
const char *address, const char *tel)

{
Gont act: : nane = new char[strlen(name) + 1];
Cont act: : address = new char[strlen(address) + 1];
Contact::tel = new char[strlen(tel) + 1];
strcpy(Cont act: : nane, nane);
strcpy(Cont act : : addr ess, address);
strcpy(Contact::tel, tel);
}
Gont act : : ~Contact (voi d)
{
del ete narre;
del et e address;
delete tel;
}
ostream &operator << (ostream &s, Contact &c)
{
OS << Il(ll << C. narre << n , "
<< c.address << " , " << c.tel <«<")";
return os;
}
ContactDir::ContactDr (const int nax)
{
typedef Contact *ContactPtr;
dirSze = 0;
naxS ze = nax;
contacts = new Cont act Pt r[naxS ze] ;
};
ContactDir::~ContactDir (void)
{
for (register i =0; i <dirSze;, ++)
del ete contacts[i];
delete [] contacts;
}

www. pragsoft.com Chapter 8: Derived Classes 147

void ContactDir::Insert (const Contact& c)

if (dirSze < naxSize) {

int idx = Lookup(c. Nane());

if (idxk >0 &&
strcnp(c. Nane(), contacts[idx]->Name()) == 0) {
del ete contacts[idx];

} else{
for (register i

contacts|i]

++di r S ze;

dirSize; i >idx; --i)// shift right
contacts[i-1];

}
contacts[idx] = new Contact(c. Nane(), c.Address(), c.Tel());

}
}
void ContactDir::Delete (const char *nane)
{
int idx = Lookup(nane);
if (idx <dirSze) {
del ete contacts[idx];
--dirSze;
for (register i =idx; i <dirSze;, ++) /1 shift left
contacts[i] = contacts[i+1];
}
}
Contact *ContactDir:: Find (const char *nane)
{
int idx = Lookup(nane);
return (idx < dirSze &&
strenp(cont act s[i dx] ->Nane(), nane) == 0)
? contact s[i dx]
0
}
int ContactDr::Lookup (const char *nane)
{
for (register i =0; i <dirSze; ++)
if (strenp(contacts[i]->Nane(), name) == 0)
return i;
return dirS ze;
}
ostream &operator << (ostream &s, ContactDir &c)
for (register i =0; i <c.dirSze;, ++)
0s << *(c.contacts[i]) << '\n';
return os;

The fallowing main function exercisesthe Contact D r class by creating a
gmdl| directory and calling the member functions

int nain (void)

148 C++ Essentials Copyright © 2005 PragSoft

ContactDr dir(10);

dir.Insert(Contact ("Mary", "11 South Rd", "282 1324"));
dir.Insert(Contact("Peter”, "9 Port Rd", "678 9862"));
dir.lnsert(Contact("Jane", "321 Yara Ln", "982 6252"));
dir.lnsert(Contact("Jack", "42 Wayne St", "663 2989"));
dir.Insert(Contact ("Fred", "2 Hgh S", "458 2324"));

cout << dir;

cout << "Find Jane: " << *dir.F nd("Jane") << '\n';
dir.Del ete("Jack");

cout << "Del eted Jack\n";

cout << dir;

return O;

b
When run, it will produce the following output:

(Mary , 11 South Rd , 282 1324)
(Peter , 9 Port Rd, 678 9862)
(Jane , 321 Yara Ln , 982 6252)
(Jack , 42 Wyne St , 663 2989)
(Fred , 2 Hgh St , 458 2324)
Find Jane: (Jane , 321 Yara Ln , 982 6252)
Del et ed Jack

(Mary , 11 South Rd , 282 1324)
(Peter , 9 Port Rd, 678 9862)
(Jane , 321 Yara Ln , 982 6252)
(Fred , 2 Hgh St , 458 2324)

www. pragsoft.com Chapter 8: Derived Classes 149

A Simple Derived Class

Listing 8.30

abhwNPEP

~N o

Annotation

We would like to define a class cdled Smart D r which behaves the same as
ContactDr, but also keeps track of the most recently looked-up entry.
Smart D r isbest defined as a derivation of Cont act D r, asillustrated by Listing
8.30.

class SmartDr : public ContactDir {
publ i c:
SnrartDr(const int max) : ContactDir(nmax) {recent = 0;}
Contact* Recent (void);

Contact* Fi nd (const char *nane);
private:
char *recent; /1 the nost recently | ooked-up nane

1

1 A derived class header includes the base classes from which it is derived. A
colon separates the two. Here, Cont act D r is gpecified to be the base class
fromwhich Snart D r is derived. The keyword publ i ¢ before Contact Di r
gpecifiesthat Cont act D r isused as a public base class.

3 SrartDr has its own congructor which in turn invokes the base class
condtructor in its member initidization lig.

4 Recent returnsapointer to the last looked-up contact (or O if there is none).
5 Findisredefined so that it can record the last [ooked-up entry.

7 Thisrecent pointerisset to point to the name of the last looked-up entry.
The member functions are defined as follows:

Contact* SmartDir:: Recent (void)

{

return recent == 0 ? 0 : ContactDir:: Fi nd(recent);
}
Contact* SmartDir::Find (const char *nane)
{

Contact *c = ContactDir:: Find(nane);

if (c!=0)

recent = (char*) c->Name();

return c;

}

Because Gontact D r is a public base class of SmartDir, dl the public
membersof Cont act O r become public members of Smart Di r. This means that
we can invoke a member function such as I nsert on a Snart D r object and this

150

C++ Essentials Copyright © 2005 PragSoft

will Smply beacdl to Contact D r: : I nsert. Smilarly, dl the private members
of Cont act D r become private membersof SmartDir.

In accordance with the principles of information hiding, the private members of
Cont act D r will not be accessble by Shart D r. Therefore, Smart D r will be
unable to access any of the data members of Cont act Di r as well as the private
member function Lookup.

Snart D r redefines the Fi nd member function. This should not be confused
with overloading. There ae two didinct definitions of this function:
ContactDr::Find and SmartDr::Find (both of which have the same
sgnature, though they can have different sgnatures if desired). Invoking Fi nd on a
Snart D r object causes the laiter to be invoked. Asillustrated by the definition of
Fi ndinSnart D r, the former can ill be invoked using its full name.

The following code fragment illudtrates thet Smart D r behaves the same as
Cont act D r, but aso keegpstrack of the most recently |ooked-up entry:

SrartDr dir(10);

dir.lInsert(Contact("Mry", "11 South Rd", "282 1324"));
dir.Insert(Contact("Peter”, "9 Port Rd", "678 9862"));
dir.lnsert(Contact("Jane", "321 Yara Ln", "982 6252"));
dir.Insert(Contact("Fred", "2 Hgh St", "458 2324"));
dir. Fi nd("Jane");

dir.Fnd("Peter");

cout << "Recent: " << *dir.Recent() << '\n';

Thiswill produce the following output:
Recent: (Peter , 9 Port Rd , 678 9862)

An object of type Smart O r contains al the datamembersof Contact D r as
well as any additiona data members introduced by ShartDr. Figure 8.12
Illustrates the physical make up of aCont act D r and aSmart D r object.

Figure 8.12 Base and derived class objects.

ContactDir object SmartDir object
contacts contacts
dirSize dirSize
maxSize maxSize
recent
O

www. pragsoft.com Chapter 8: Derived Classes 151

Class Hierarchy Notation

A dass hierarchy is usudly illugtrated usng a Smple graph notation. Figure 8.13
illugrates the UML notation that we will be usng in this book. Each class is
represented by a box which is labeled with the class name. Inheritance between
two classesisillustrated by a directed line drawn from the derived class to the base
class. A line with a diamond shape a one end depicts composition (i.e.,, a class
object is composed of one or more objects of another class). The number of
objects contained by another object is depicted by alabe (eg., n).

Figure 8.13 A simple class hierarchy
n

ContactDir S Contact

i

SmartDir

Figure 8.13 isinterpreted as follows. Cont act, ContactD r, and Snrart D r
ae dl classes. A Contact Di r is composed of zero or more Cont act objects.
Snart D r isderived from ContactDir.

O

152 C++ Essentials Copyright © 2005 PragSoft

Constructors and Destructors

A derived class may have constructors and a destructor. Since a derived class may
provide data members on top of those of its base class, the role of the constructor
and destructor isto, respectively, initidize and destroy these additiond members.

When an object of a derived class is created, the base class congtructor is
goplied to it firgt, followed by the derived class congructor. When the object is
destroyed, the destructor of the derived class is applied firg, followed by the base
class destructor. In other words, constructors are applied in order of derivation and
destructors are agpplied in the reverse order. For example, consder a class C
derived from B which is in turn derived from A Figure 8.14 illustrates how an
object ¢ of type Cis created and destroyed.

class A {I* ... *}
class B: public A { /* ... */}
class C: public B { /* ... *] }

Figure 8.14 Derived class object construction and destruction order.

¢ being constructed ¢ being destroyed
AT A A ~A
A
B::B B::~B
A
C:C B o C:~C

The congtructor of a derived class whose base class constructor requires
arguments should specify these in the definition of its congtructor. To do this, the
derived class congtructor explicitly invokes the base class congtructor in its member
initidization list. For example, the Smar t D r congtructor passes its argument to the
Cont act D r congructor in thisway:

SvartDr::SvartDr (const int max) : ContactD r(max)
{7* ... %}

In generd, dl that a derived class constructor requires is an object from the base
class. In some dtuations, this may not even require referring to the base class

congtructor:
extern ContactDir cd; /1 defined el sewhere
SrartDr::SrartDr (const int max) : cd
{1* ... %} O

www. pragsoft.com Chapter 8: Derived Classes 153

Protected Class Members

Although the private members of a base class are inherited by a derived class, they
are not accessible to it. For example, Smart D r inherits dl the private (and public)
members of ContactDir, but is not dlowed to directly refer to the private
membersof Cont act Di r. The ideais that private members should be completely
hidden so that they cannot be tampered with by the class clients.

This regtriction may prove too prohibitive for classes from which other classes
are likely to be derived. Denying the derived class access to the base class private
members may convolute itsimplementation or even make it impractica to define.

The redriction can be relaxed by defining the base class private members as
protected instead. As far as the clients of a class are concerned, a protected
member is the same as a private member: it cannot be accessed by the class clients.
However, a protected base class member can be accessed by any class derived
fromit.

For example, the private members of Cont act D r can be made protected by
subgtituting the keyword pr ot ect ed for pri vat e:

class GontactDr {
/...

pr ot ect ed:
i nt Lookup (const char *nane);
Contact **contacts; // list of contacts
i nt dirS ze; /1l current directory size
i nt maxS ze; /1 max directory size

b

Asareault, Lookup and the data members of Cont act D r are now accessible to
ShartDir.

The access keywords pri vat e, publ i ¢, and pr ot ect ed can occur as many
times as desired in a class definition. Each access keyword specifies the access
characterigtics of the members following it until the next access keyword:

class Foo {
publ i c:
/1 public nenbers...
private:
[l private nenbers...
pr ot ect ed:
/] protected nenbers...
publ i c:
/1l nore public nmenbers...
pr ot ect ed:
// nore protected menbers. ..
} O

154 C++ Essentials Copyright © 2005 PragSoft

Private, Public, and Protected Base Classes

A base class may be specified to be private, public, or protected. Unless so
specified, the base classis assumed to be private;

class A {
private: int Xx; void Fx (void);
publ i c: int y; void Fy (void);
protected: int z; void Fz (void);
};
class B: A{}; I/l Ais a private base class of B
class C: private A {}; /Il Ais a private base class of C

class D: public A {};
class E: protected A {};

/1 Ais a public base class of D
/1 Ais a protected base class of E

The behavior of theseis as follows (see Table 8.13 for asummary):

All the members of a private base class become private members of the
derived class. So x, Fx, y, Fy, z, and Fz dl become private members of B and
C

The members of a public base class keep their access characterigtics in the
derived class. So, x and Fx becomes private membersof D, y and Fy become
public membersof D, and z and Fz become protected members of D.

The private members of a protected base class become private members of
the derived class. Whereas, the public and protected members of a protected
base class become protected members of the derived class. So, x and Fx
become private members of E, and y, Fy, z, and Fz become protected
membersof E

Table 8.13 Base class access inheritance rules.

Base Class Private Derived Public Derived Protected Derived
Private Member private private private

Public Member private public protected
Protected Member | private protected protected

It is dso possble to individudly exempt a base class member from the access
changes specified by a derived class, s0 that it retains its origind access
characterigics. To do this, the exempted member is fully named in the derived class

under its origina access characterigtic. For example:

class C: private A {

/...
publ i c: A Fy; /1 makes Fy a public menber of C
protected: A:z /1 makes z a protected nenber of C

|

www. pragsoft.com

Chapter 8: Derived Classes

Virtual Functions

Congder another variation of the Contact D r class, cdled SortedD r, which
ensures that new contacts are inserted in such a manner that the list remains sorted
a al times. The obvious advantage of thisis that the search speed can be improved
by using the binary search dgorithm instead of linear search.

The actud search is performed by the Lookup member function. Therefore we
need to redefine this function in SortedD r 0 that it uses the binary search
dgorithm. However, dl the other member functions refer to
Contact D r:: Lookup. We can adso redefine these so that they refer to
SortedDi r: : Lookup ingtead. If we follow this approach, the vaue of inheritance
becomes rather questionable, because we would have practicaly redefined the
whole class.

What we redlly want to do is to find a way of expressng this Lookup should
be tied to the type of the object which invokes it. If the object is of type
SortedD r theninvoking Lookup (from anywhere, even from within the member
functions of Cont act Di r) should mean SortedD r: : Lookup. Smilaly, if the
object is of type Cont act D r then cdling Lookup (from anywhere) should mean
Gont act O r: : Lookup.

This can be achieved through the dynamic binding of Lookup: the decision as
to which verdgon of Lookup to cdl is made a runtime depending on the type of the
object.

In C++, dynamic binding is supported by virtud member functions. A member
function is declared as virtud by insarting the keyword virtual before its
prototype in the base cdass. Any member function, including constructors and
destructors, can be declared as virtua. Lookup should be declared as virtud in
ContactDir:

class GontactDr {
/...

pr ot ect ed:
virtual int Lookup (const char *nare);
/...

|

Only nongtatic member functions can be declared as virtud. A virtud function
redefined in a derived class must have exactly the same prototype as the one in the
base class. Virtua functions can be overloaded like other member functions,

Liging 831 shows the definition of SortedDir as a derived class of
ContactDr.

Listing 8.31

156 C++ Essentials Copyright © 2005 PragSoft

1| class SortedDr : public ContactDr {
2 | public:
3 SortedDir (const int nax) : ContactD r(max) {}
4 | protected:
5 virtual int Lookup (const char *nane);
61}
Annotation

3 Theconstructor smply invokes the base class constructor.

5 Lookup is agan declared as virtud to endble any class derived from
SortedD r toredefineit.

The new definition of Lookup isasfollows:

int SortedD r::Lookup (const char *nane)

{
int bot = 0;
int top =dirSize - 1;
int pos = 0;
i nt md, cnp;
while (bot <=top) {
md = (bot + top) / 2
if ((cnp = strcnp(nanme, contacts[md]->Nane())) == 0)
return md, /1 return itemindex
elseif (cmp < 0)
pos = top = md - 1; /1 restrict search to | ower half
el se
pos = bot = md + 1; /1 restrict search to upper half
}
return pos <0 ? 0 : pos; /'l expected sl ot
}

The following code fragment illustrates that Sort edDi r: : Lookup is cdled by
Contact D r:: | nsert wheninvoked viaaSort edD r object:

SortedD r dir(10);

dir.Insert(Contact("Mry", "11 South Rd", "282 1324"));
dir.Insert(Contact("Peter”, "9 Port Rd", "678 9862"));
dir.lnsert(Contact("Jane", "321 Yara Ln", "982 6252"));
dir.lnsert(Contact("Jack", "42 \Wyne St", "663 2989"));
dir.Insert(Contact("Fred", "2 Hgh St", "458 2324"));
cout << dir;

It will produce the following output:

(Fred , 2 Hgh & , 458 2324)

(Jack , 42 Wyne St , 663 2989)

(Jane , 321 Yara Ln , 982 6252)

(Mary , 11 South Rd , 282 1324)

(Peter , 9 Port Rd, 678 9862) O

www. pragsoft.com Chapter 8: Derived Classes 157

Multiple Inheritance

The derived classes encountered so far in this chepter represent single
inheritance, because each inherits its attributes from a sngle base class.
Alternatively, a derived class may have multiple base classes. Thisis referred to as
multiple inheritance.

For example, suppose we have defined two classes for, respectivey,
representing lists of options and bitmapped windows:

class OptionList {

publ i c:
QotionList (int n);
~QptionList (void);
1. ..

b

cl ass Wndow {

publ i c:
Wndow (Rect &bounds);
~Wndow (voi d);
/...

h

A menu is a lig of options displayed within its own window. It therefore makes
sense to define Menu by deriving it from Qpt i onLi st and W ndow:

class Menu : public QptionList, public Wndow {

publ i c:
Menu (int n, Rect &bounds);
~Menu (void);
/...

h

Under multiple inheritance, a derived dass inherits al of the members of its
base classes. As before, each of the base classes may be private, public, or
protected. The same base member access principles apply. Figure 8.15 illugtrates
the class hierarchy for Menu.

Figure 8.15 The Menu class hierarchy
OptionList Window
Menu
Since the base classes of Menu have congructors that take arguments, the
condructor for the derived class should invoke these in its member initidization list:
158 C++ Essentials Copyright © 2005 PragSoft

Menu: : Menu (int n, Rect &ounds) : QptionList(n), Wndow bounds)
{

}

...

The order in which the base class congtructors are invoked is the same as the order
in which they are specified in the derived class header (not the order in which they
appear in the derived dass congructor’s member initidization list). For Menu, for
example, the congtructor for Qpti onLi st is invoked before the constructor for
W ndow, even if we change their order in the congtructor:

Menu: : Menu (int n, Rect &ounds) : Wndow(bounds), QptionLi st(n)
{

}

...

The destructors are gpplied in the reverse order: ~Menu, followed by ~W ndow,
followed by ~Qpt i onLi st.

The obvious implementation of a derived class object is to contain one object
from each of its base classes. Figure 8.16 illudtrates the relationship between a
Menu object and its base class objects.

Figure 8.16 Base and derived class objects.

OptionList object Window object Menu object
OptionList Window OptionList
data members data members data members

Window
data members

Menu
data members

In generd, a derived class may have any number of base classes, dl of which
must be digtinct:

class X: A B A{ /1 illegal: A appears tw ce
/...
h

www. pragsoft.com Chapter 8: Derived Classes 159

Ambiguity

Multiple inheritance further complicates the rules for referring to the members of a
class. For example, suppose that both Qpt i onLi st and W ndow have a member
function cdled H ghl i ght for highlighting a specific part of ether object type:

class OptionList {
publ i c:

/...

void Hghlight (int part);
b
cl ass Wndow {
publ i c:

/...

void Hghlight (int part);
b

The derived class Menu will inherit both these functions. As areault, the cdl
m H ghlight (0);

(where mis a Menu object) is ambiguous and will not compile, because it is not
clear whether it refers to Qpti onLi st:: H ghli ght or Wndow. : H ghl i ght .
The ambiguity isresolved by making the cdl explicit:

m W ndow. : H ghl i ght (0);

Alternatively, we can defineaH ghl i ght member for Menu which in tun cdls the
H ghl i ght members of the base classes:

class Menu : public QotionList, public Wndow {

publ i c:
/...
void Hghlight (int part);
H
void Menu::H ghlight (int part)
{
QptionList::Hghlight(part);
Wndow. : H ghl i ght (part);
}

160 C++ Essentials Copyright © 2005 PragSoft

Type Conversion

For any derived class there is an implicit type converson from the derived class to
any of its public base classes. This can be used for converting a derived class
object to a base class object, be it a proper object, areference, or a pointer:

Menu nenu(n, bounds);
Wndow w n = nenu;
Wndow &nRef = nenu;
Wndow *wPtr = &nrenu;

Such conversions are safe because the derived class object always contains al of
its base class objects. The first assgnment, for example, causes the W ndow
component of nenu to be assigned to wi n.

By contrag, there is no implicit converson from a base class to a derived
class. The reason being that such a conversion is potentialy dangerous due to the
fact that the derived class object may have data members not present in the base
class object. The extra data members will therefore end up with unpredictable
vaues. All such conversons must be explicitly cast to confirm the programmer’s

intention:
Menu &nRef = (Menu& win; /1 caution!
Menu *mPtr = (Menu*) &win; /] caution!

A base class object cannot be assigned to a derived class object unless there is a
type converson congtructor in the derived class defined for this purpose. For
example, given

class Menu : public QptionList, public Wndow {
publ i c:

/...

Menu (W ndowg) ;
b

the following would be vdid and would use the congtructor to convert wi n to a
Menu object before assigning:

nenu = Wi n; /1 invokes Menu: : Menu(W ndows)

www. pragsoft.com Chapter 8: Derived Classes 161

Inheritance and Class Object Members

Congder the problem of recording the average time required for a message to be
transmitted from one machine to another in a long-haul network. This can be
represented as atable, asillustrated by Table 8.14.

Table 8.14 Message transmission time (in seconds).
Sydney Melbourne | Perth
Sydney 0.00 3.55 12.45
Melbourne 2.34 0.00 10.31
Perth 15.36 9.32 0.00

The row and column indices for this table are strings rather than integers, so
the Mat ri x class (Chapter 7) will not be adequate for representing the table. We
need a way of mapping gtrings to indices. This is aready supported by the
AssocVec class (Chapter 7). Asshown in Ligting 8.32, Tabl el can be defined as
aderived classof Mat ri x and AssocVec.

Listing 8.32

1| class Tablel : Matrix, AssocVec ({
2 | public:
3 Tabl el (const short entries)
4 : Matrix(entries, entries),
5 AssocVec(entri es) {}
6 doubl e& operator () (const char *src, const char *dest);
7}
8 | doubl e& Tabl el::operator () (const char *src, const char *dest)
9 1{

10 return this->Matrix::operator()(

11 t hi s->AssocVec: : operator[](src),

12 t hi s- >AssocVec: : operator[] (dest)

13);

14 |}

Hereisasampletest of the class

Tabl e tab(3);

tab(" Sydney", "Perth") = 12. 45;

cout << "Sydney -> Perth =" << tab("Sydney","Perth") << '\n';
which produces the following output:

Sydney -> Perth = 12.45

Another way of defining this dass is to derive it from Matri x and include an
AssocVec object as adata member (see Listing 8.33).

Listing 8.33

162 C++ Essentials Copyright © 2005 PragSoft

1l |class Table2 : Matrix {

2 | public:

3 Tabl e2 (const short entries)

4 . Matrix(entries, entries),

5 i ndex(entries) {}

6 doubl e& operator () (const char *src, const char *dest);

7 | private:

8 AssocVec i ndex; /1 row and col um i ndex

91}
10 | doubl e& Tabl e2:: operator () (const char *src, const char *dest)
11 | {
12 return this->Matrix::operator()(index[src], index[dest]);
13 |}

The inevitable question is which one is a better solution, Tabl el or Tabl e2?
The answer liesin the relationship of table to matrix and associative vector:

A tableis a form of matrix.

A table is not an associative vector, but rather uses an associative vector to

manage the association of its row and column labels with positional indexes.

In generd, an is-a relaionship is best redized usng inheritance, because it implies
that the properties of one object are shared by another object. On the other hand,
a uses-a (or has-a) reaionship is best redized usng compostion, because it
implies that one object is contained by another object. Tabl e2 is therefore the
preferred solution.

It is worth congidering which of the two versions of table better lends itself to
generdization. One obvious generdization is to remove the retriction that the table
should be square, and to dlow the rows and columns to have different labels. To
do this, we need to provide two sets of indexes: one for rows and one for columns.
Hence we need two associative vectors. It is arguably easier to expand Tabl e2 to
do this rather than modify Tabl el (seeLigting 8.34).

Figure 8.17 shows the class hierarchies for the three variations of table.

Figure 8.17 Variations of table.

Matrix AssocVec Matrix Matrix
\ fl Zﬁ L Zﬁ 5
Tablel Table2 [@———— AssocVec Table3 [@——— AssocVec
Listing 8.34

www. pragsoft.com Chapter 8: Derived Classes 163

NOoO O WNPE

10
11

12
13
14
15

Figure 8.18

cl ass Tabl e3 :
publ i c:

Matrix {
Tabl e3 (const short rows, const short cols)
Matri x(rows, col s),
row dx(rows),
col 1 dx(col s) {}
doubl e& operator () (const char *src, const char *dest);

private:

AssocVec row dx; /1 row index

AssocVec col | dx; /1 col um i ndex
h
doubl e& Tabl e3: : operator () (const char *src, const char *dest)
{

return this->Matrix::operator()(row dx[src], colldx[dest]);
}

For a derived class which aso has class object data members, the order of
object congtruction is as follows. First the base class congtructors are invoked in
the order in which they appear in the derived class header. Then the class object
data members are initidized by their constructors being invoked in the same order
in which they are declared in the class. Findly, the derived class congtructor is
invoked. As before, the derived class object is destroyed in the reverse order of

construction.

Fgure 8.18 illugraes thisfor a Tabl e3 object.

Table3 object construction and destruction order.

table being constructed

Y

Matrix::Matrix

Y

rowldx.AssocVec::AssocVec

Y

colldx.AssocVec::AssocVec

A 4

Table3::Table3

table being destroyed

T

Matrix::~Matrix

rowldx.AssocVec::~AssocVec

A

colldx.AssocVec::~AssocVec

A

Table3::~Table3

164

C++ Essentials

Copyright © 2005 PragSoft

Virtual Base Classes

Recdl the Menu class and suppose that its two base classes are dso multiply

derived:
class ptionList : public Wdget, List { 1*...% };
cl ass Wndow : public Wdget, Port { 1*...*% };
cl ass Menu : public QotionList, public Wndow { /*...*/ };

Since Wdget isabase class for both (pti onLi st and W ndow, each menu
object will have two widget objects (see Figure 8.199). This is not desrable
(because a menu is considered a single widget) and may lead to ambiguity. For
example, when gpplying a widget member function to a menu object, it is not clear
as to which of the two widget objects it should be applied. The problem is
overcome by making Wdget avirtual base classof ot i onLi st and Wndow. A
base class is made virtud by placing the keyword vi rt ual before its name in the

derived class header:
class OptionList : virtual public Wdget, List { I*...% };
cl ass Wndow : virtual public Wdget, Port { I*...% };

This ensures that a Menu object will contain exactly one W dget object. In other
words, Qpt i onLi st and W ndowwill share the same W dget object.

An object of a class which is derived from a virtua base class does not
directly contain the latter’s object, but rather a pointer to it (see Figure 8.19b and
8.19¢). This enables multiple occurrences of a virtud class in a hierarchy to be
collapsed into one (see Figure 8.19d).

If in a class hierarchy some instances of a base class X are declared as virtua
and other instances as nonvirtud, then the derived class object will contain an X
object for each nonvirtual ingance of X, and a sngle X object for dl virtud
occurrences of X.

A virtud base dass object is initidized, not necessarily by its immediate
derived class, but by the derived class farthest down the class hierarchy. This rule
ensures that the virtua base class object is initidized only once. For example, in a
menu object, the widget object is initidized by the Menu congtructor (which
overrides the invocation of the W dget constructor by Qpt i onLi st or W ndow):

Menu: : Menu (int n, Rect &bounds) : Wdget (bounds),
ptionLi st (n),
W ndow(bounds)
{/11...}

Regardless of where it gopears in a class hierarchy, a virtual base class object is
always constructed before nonvirtua objects in the same hierarchy.

Figure 8.19 Nonvirtual and virtual base classes.

www. pragsoft.com Chapter 8: Derived Classes 165

(a) Menu object (b) OptionList object with Widget as virtual
> Widget data members

| Widget data members | | List data members |

| List data members | OptionList data members

OptionList data members

(c) Window object with Widget as virtual
’ Widget data members

| Widget data members |

| Port data members |

| Port data members |

Window data members

Window data members

(d) Menu object with Widget as virtual

Menu data members

| List data members |

—>| Widget data members

OptionList data members

| Port data members |

Window data members

Menu data members

If in a class hierarchy a virtud base is declared with conflicting access
characterigtics (i.e,, any combination of private, protected, and public), then the
most accessible will dominate. For example, if Wdget were declared a private
base classof pti onLi st, and a public base class of W ndow; then it would ill
be a public base class of Menu.

166

C++ Essentials Copyright © 2005 PragSoft

Overloaded Operators

Except for the assgnment operator, a derived class inherits al the overloaded
operators of its base classes. An operator overloaded by the derived class itself
hides the overloading of the same operator by the base classes (in exactly the same
way member functions of a derived class hide member functions of base classes).

Memberwise initidization and assgnment (see Chapter 7) extend to derived
classes. For any given class Y derived from X, membewise initidization is handled
by an automaticaly-generated (or user-defined) congtructor of the form:

Y::Y (const Y&;

Smilarly, memberwise assgnment is handled by an automaticaly-generated (or
user-defined) overloading of the = operator:

Y& Y::operator = (Y&

Memberwise initidization (or assgnment) of a derived class object involves the
memberwise initidization (or assgnment) of its base classes as wdl as its dass
object members.

Specid care is needed when a derived class relies on the overloading of new
and del et e operators for its base class. For example, recdl the overloading of
these two operators for the Poi nt classin Chapter 7, and suppose that we wish to

use them for aderived class.
class Point3D: public Point {
publ i c:
/...
private:
int depth;

b

Because the implementation of Point::operator new assumes that the
requested block should be the sze of a Poi nt object, its inheritance by the
Poi nt 3D class leads to a problem: it fails to account for the extra space needed by
the data member of the latter (i.e,, dept h).

To avoid this problem, an overloading of new should attempt to dlocate the
exact amount of storage specified by its Sze parameter, rather than assuming a
predefined sze. Smilarly, an overloading of del et e should note the size specified

by its second parameter and attempt to rel ease exactly those many bytes.
O

www. pragsoft.com Chapter 8: Derived Classes 167

Exercises

8.46 Condder a Year class which divides the days in a year into work days and off
days. Because each day has abinary vaue, Year iseasly derived from Bi t Vec:

enum Mont h {
Jan, Feb, MNar, Apr, May, Jun, Jul, Aug, Sep, Cct, Nov, Dec
b

class Year : public BitVec {
publ i c:
Year (const short year);
voi d Vr kDay (const short day); // set day as work day
voi d GfDay (const short day); // set day as off day
Bool Wirking (const short day); // true if a work day
short Day (const short day, /1 convert date to day
const Month nonth, const short year);

pr ot ect ed:
short year; /1 cal endar year

b

Days are sequentialy numbered from the beginning of the year, Sarting a 1 for
January 1st. Complete the Year dass by implementing its member functions.

8.47 Condder an educationd application program which given an arbitrary set of vaues,
X =[Xq, X, ..., X,], generates a set of n linear equations whose solution is X, and
then proceeds to illudrate this by solving the equations usng Gaussan dimination.
Derive a class named Li near Egns from Mat ri x and for this purpose and define
the following member functionsfor it:

A congtructor which accepts X as a matrix, and a destructor.

Gener at e which randomly generates a system of linear equations as a matrix
M. It should take a pogtive integer (coef) as argument and generate a set of
equations, ensuring that the range of the coefficients does not exceed coef .
Use a random number generator (e.g., r andomunder UNIX) to generate the
coefficients. To ensure that X is a solution for the equations denoted by M, the
last lement of arow K is denoted by:

M[k,n+1=8a M[k.,i]" X[i]
i=1
Sol ve which uses Gaussan dimination to solve the equations generated by
Generat e. Sol ve should the output operator of Matrix to dislay the
augmented matrix each time the el ements below a pivot are diminated.

8.48 Enumerations introduced by an enum declaration are smal subsets of integers. In
certain gpplications we may need to condruct sets of such enumerations. For

168 C++ Essentials Copyright © 2005 PragSoft

example, in a parser, each parsing routine may be passed a set of symbols that
should not be skipped when the parser attempts to recover from a syntax error.
These symbols are typically the reserved words of the language:

enum Reserved {cl assSym privateSym publicSym protectedSym
friendSym ifSym elseSym swtchSym...};

Given that there may be a most n dementsin aset (n being a smal number) the set
can be efficiently represented as a bit vector of n eements. Derive a class named
Enunget from Bi t Veec to fadilitate this. Enunet should overload the following
operators.

Operator + for st union.

Operator - for set difference.

Operator * for set intersection.

Operator %for set membership.

Operators <= and >= for testing if a set is a subset of another.

Operators >> and << for, respectively, adding an element to and removing an
element from ast.

8.49 An abstract class is a class which is never used directly but provides a skeleton
for other classes to be derived from it. Typicdly, dl the member functions of an
abgract are virtud and have dummy implementations. The following is a smple
example of an abstract class:

cl ass Dat abase {

publ i c:
virtual void Insert (Key, Data)
virtual void Delete (Key)

}
}
virtual Data Search (Key) r

Lt Xate Wt

eturn 0;}

b

It provides a skeleton for a database-like classes. Examples of the kind of classes
which could be derived from database include: linked-ligt, binary tree, and B-tree.
Firgt derive a B-tree class from Database and then derive a B*-tree from B-tree:

class Blree : public Database { /*...*/ };
class Btar : public Blree {I*...% };

See Comer (1979) for a description of B-tree and B*-tree. For the purpose of this

exercise, use the built-in typei nt for Key and doubl e for Dat a.
!

www. pragsoft.com Chapter 8: Derived Classes 169

9. Templates

This chapter describes the templae facility of C++ for defining functions and
classes. Templates facilitate the generic definition of functions and classes o that
they are not tied to pecific implementation types. They are invduable in that they
dispense with the burden of redefining a function or class so that it will work with
yet another data type.

A function template defines an algorithm. An agorithm is a generic recipe for
accomplishing a task, independent of the particular data types used for its
implementation. For example, the binary search agorithm operates on a sorted
aray of items, whose exact type is irrdevant to the agorithm. Binary search can
therefore be defined as a function template with a type parameter which denotes
the type of the array items. This template then becomes a blueprint for generating
executable functions by subgtituting a concrete type for the type parameter. This
processis cdled instantiation and its outcome is a conventiond function.

A class template defines a parameterized type. A parameterized type is a
data type defined in terms of other data types, one or more of which are
unspecified. Most data types can be defined independently of the concrete data
types used in their implementation. For example, the stack data type involves a set
of items whose exact type isirrelevant to the concept of stack. Stack can therefore
be defined as a class template with atype parameter which specifies the type of the
items to be stored on the stack. This template can then be ingtantiated, by
substituting a concrete type for the type parameter, to generate executable stack
classes.

Templates provide direct support for writing reusable code. Thisin turn makes
them an ided tool for defining generic libraries.

We will present afew smple examples to illustrate how templates are defined,
ingtantiated, and specidized. We will describe the use of nontype parameters in
class templates, and discuss the role of class members, friends, and derivations in
the context of class templates.

170 C++ Essentials Copyright © 2005 PragSoft

Function Template Definition

A function template definition (or declaration) is dways preceded by a template
clause, which conssts of the keyword t enpl at e and a list of one or more type
parameters. For example,

tenplate <class T> T Max (T, T);

declares a function template named Max for returning the maximum of two objects.
T denotes an unspecified (generic) type. Max is specified to compare two objects
of the same type and return the larger of the two. Both arguments and the return
value are therefore of the same type T. The definition of a function template is very
smilar to a normd function, except that the specified type parameters can be
referred to within the definition. The definition of Max isshown in Listing 9.35.

Listing 9.35

tenpl ate <cl ass T>
T Max (T vall, Tval?2)

{
}

return vall >val2 ? vall : val 2;

abhwNPE

A type parameter is an arbitrary identifier whose scope is limited to the
function itsdf. Type parameters dways gppear indde <>. Each type parameter
consgs of the keyword cl ass followed by the parameter name. When mulltiple
type parameters are used, they should be separated by commas. Each specified
type parameter must actualy be referred to in the function prototype. The keyword
cl ass cannot be factored out:

tenplate <class T1, class T2, class T3>

T3 Relation(Tl, T2); /1 ok
tenpl ate <class T1, class T2>
int Conpare (T1, T1); /1 illegal! T2 not used.
tenpl ate <class T1, T2> /1 illegal! class mssing for T2

int Compare (T1, T2);

For gétic, inline, and extern functions, the respective keyword must appear after
the template clause, and not beforeit:

tenpl ate <class T>
infine TMx (Tvall Tval?2; [// ok

inline tenpl ate <cl ass T> /] illegal! inline msplaced
T Max (T vall, T val2);
O

www. pragsoft.com Chapter 9: Templates 171

Function

Template Instantiation

Listing 9.36

A function template represents an dgorithm from which executable implementations
of the function can be generated by binding its type parameters to concrete (built-in
or user-defined) types. For example, given the earlier template definition of Max,
the code fragment

cout << Max(19, 5) << ' '
<< Max(10.5, 20.3) << ' '
< Mx('a','b') << '\n';

will produce the following outpuit:

19 20.3 b

In the firg cal to Max, both arguments are integers, hence T isbound to i nt .
In the second cdll, both arguments are redls, hence T is bound to doubl e. In the
final cdll, both arguments are characters, hence T is bound to char . A tota of three
functions are therefore generated by the compiler to handle these cases:

i nt Max (int, int);
doubl e Max (doubl e, double);
char Max (char, char);

When the compiler encounters a cdl to a template function, it attempts to infer
the concrete type to be subtituted for each type parameter by examining the type
of the arguments in the cal. The compiler does not atempt any implicit type
conversons to ensure a match. As a reault, it cannot resolve the binding of the
same type parameter to reasonable but unidentical types. For example:

Mix(10, 12.6);

would be considered an error because it requires the first argument to be converted
to doubl e so that both arguments can maich T. The same redtriction even gpplies
to the ordinary parameters of a function template. For example, consder the
dterndtive definition of Max in Liging 9.36 for finding the maximum vaue in an
array of vaues. The ordinary parameter n denotes the number of array elements. A
matching argument for this parameter must be of typei nt :

unsi gned nVal ues = 4;

double values[] = {10.3, 19.5, 20.6, 3.5};

Max(val ues, 4); /1 ok

Max(val ues, nVal ues); /1 illegal! nVal ues does not match int

172

C++ Essentials Copyright © 2005 PragSoft

1 |tenplate <class T>

2| T Mx (T *vals, int n)

311

4 T max = val s[(];

5 for (register i =1; i <n; ++)
6 if (vals[i] > nax)

7 nax = val s[i];

8 return nax;

9}

The obvious solution to both problemsisto use explicit type conversion:

Max(doubl e(10), 12.6);
Max(val ues, int(nValues));

As illudrated by Lidings 935 and 9.36, function templates can be
overloaded in exactly the same way as normd functions. The same rule applies:
each overloaded definition must have a unique signature.

Both definitions of Max assume that the > operator is defined for the type
subdtituted in an ingantiation. When this is not the case, the compiler flagsit as an
error:

Poi nt pt1(10, 20), pt2(20, 30);
Max(ptl, pt2); /] illegal: ptl > pt2 undefined

For some other types, the operator may be defined but not produce the desired
effect. For example, usng Max to compare two strings will result in their pointer
vaues being compared, not their character sequences.

Max (" Day", "N ght"); /] caution: "Day" > "N ght" undesirable

This case can be correctly handled through a specialization of the function, which
involves defining an indance of the function to exactly match the proposed

argument types.

#i ncl ude <string. h>
char* Max (char *strl, char *str2) /] specialization of Max

{
}

Given this specidization, the aove cdl now matches this function and will not
result in an ingtance of the function template to be indtantiated for char *.

return strenp(strl, str2) >0 ? strl : str2;

O

www. pragsoft.com Chapter 9: Templates 173

Example: Binary Search

Listing 9.37

OO~ WNE

7

8

9
10
11
12
13
14
15
16
17

Annotation

Recdl the binary search dgorithm implemented in Chapter 5. Binary search is
better defined as a function template so that it can be used for searching arrays of
any type. Ligting 9.20 provides atemplate definition.

tenpl ate <cl ass Type>
int BinSearch (Type & tem Type *table, int n)
{
int bot = 0;
int top=n- 1;
int md, cnp;
while (bot <= top) {
md = (bot + top) / 2
if (item== table[md])
return md,; /1 return itemindex
else if (item< table[md])
top = md - 1; Il restrict search to lower half
el se
bot = md + 1, /1 restrict search to upper half
}
return -1; /1 not found
}

3 Thisisthetemplate clause. It introduces Type as a type parameter, the scope
for which isthe entire definition of the Bi nSear ch function.

4 B nSear ch searchesfor an item denoted by i t emin the sorted array denoted
by t abl e, the dimension for which is denoted by n.

9 Thisline assumes that the operator == is defined for the type to which Type is
bound in an ingantiation.

11 Thisline assumes that the operator < is defined for the type to which Type is
bound in an indantiation.

Indantiating Bi nSear ch with Type bound to a built-in type such as i nt has
the desired effect. For example,

int nuns[] = {10, 12, 30, 38, 52, 100};
cout << BinSearch(52, nuns, 6) << '\n';

produces the expected output:

4

174

C++ Essentials Copyright © 2005 PragSoft

Now let us ingantiate Bi nSear ch for a user-defined type such as RawBook
(see Chapter 7). Fird, we need to ensure that the comparison operators are
defined for our user-defined type:

cl ass RawBook {
publ i c:
Ir...
i nt operator < (RawBook &b) {return Conpare(b) < 0;}
i nt operator > (RawBook &b) {return Conpare(b) > 0;}
i nt operat or == (RawBook &b) {return Conpare(b) == 0;}
private:
int Conpar e (RawBook&) ;
/...

|

i nt RawBook: : Conpar e (RawBook &b)
{
int cnp;
Book *bl = RawToBook();
Book *b2 = b. RawToBook();
if ((cnp = strcenp(bl->title, b2->title)) == 0)
if ((cnp = strcnp(bl->author, b2->author)) == 0)
return strcnp(bl->publisher, b2->publisher);
return cnp;

}

All are defined in terms of the private member function Gonpar e which compares
two books by giving priority to ther titles, then authors, and findly publishers. The
code fragment

RawBook books[] = {
RawBook(" %\Pet er s\ 0% Bl ue

Ear t h\ 0%Phedr a\ 0%Sydney\ 0%1981\ 0\ n"),
RawBook(" 9%dPr egnancy\ 0%\Jackson\ 091987\ 0%M | es\ O\ n") ,
RawBook (" %@ Zor o\ 0%A\Sni t hs\ 0%r1988\ 0%°M | es\ 0\ n")

};

cout << Bi nSear ch(RawBook(" %@Pr egnancy\ 0%\Jackson\ 0%M | es\ O\ n"),

books, 3) << '\n';

produces the output
1

which confirmsthat Bi nSear ch isinstantiated as expected.

www. pragsoft.com Chapter 9: Templates 175

Class Template Definition

Listing 9.38

A class template definition (or declaration) is aways preceded by a template
clause. For example,

tenpl ate <cl ass Type> cl ass Stack;

declares a class template named St ack. A dlass template clause follows the same
gyntax rules as a function template clause.

The definition of a class template is very smilar to a norma dass, except that
the specified type parameters can be referred to within the definition. The definition
of St ack isshownin Liging 9.38.

tenpl ate <cl ass Type>
class Stack {
publ i c:
Stack (int max) : stack(new Type[max]),
top(-1), nmaxSi ze(nax) {}
~Stack (void) {del ete [] stack;}
voi d Push (Type &val);
voi d Pop (voi d) {if (top >=0) --top;}
Type& Top (voi d) {return stack[top];}
friend ostrean& operator << (ostrean® Stack&);
private:
Type *st ack; /1 stack array
i nt t op; /1 index of top stack entry
const int naxs ze; /1l max size of stack
s

The member functions of Stack are defined inline except for Push. The <<
operator is adso overloaded to display the stack contents for testing purposes.
These two are defined as follows:

tenpl at e <cl ass Type>
voi d Stack<Type>:: Push (Type &val)
{
if (top+l < nmaxS ze)
stack[++top] = val;

}

tenpl at e <cl ass Type>
ostrean& operator << (ostrean& os, Stack<Type>& s)

{
for (register i =0; i <=s.top; ++)
0s << s.stack[i] <" "
return os;
}

Except for within the class definition itsdlf, a reference to a class template must
include its template parameter ligt. Thisiswhy the definition of Push and << usethe
name St ack<Type> ingead of St ack. O

176

C++ Essentials Copyright © 2005 PragSoft

Class Template Instantiation

A class template represents a generic class from which executable implementations
of the class can be generated by binding its type parameters to concrete (built-in or
user-defined) types. For example, given the earlier template definition of St ack, it
IS easy to generate stacks of avariety of types through ingtantiation:

St ack<i nt > s1(10); /1l stack of integers
St ack<doubl e> s2(10); /1l stack of doubl es
St ack<Poi nt> s3(10); /1l stack of points

Each of these indantiations causes the member functions of the class to be
accordingly ingantisted. So, for example, in the firg indantiation, the member
functionswill be ingantiated with Type boundstoi nt . Therefore,

s1. Push(10);
s1. Push(20);
s1. Push(30);
cout << sl << '\n';

will produce the following output:

10 20 30

When a nontemplate class or function refers to a class template, it should bind
the latter’ s type parameters to defined types. For example:

class Sanple {
Stack<int> int$Stack; /1 ok
St ack<Type> typeStack; // illegal! Type is undefined
/...

|

The combination of a class template and arguments for dl of its type parameters
(e.g., Stack<i nt >) represents a valid type specifier. It may appear wherever a
C++ type may appear.

If aclass template is used as a part of the definition of another class template
(or function template), then the former’s type parameters can be bound to the
latter’ s template parameters. For example:

tenpl at e <cl ass Type>

class Sanple {
Stack<int> int$Stack; /1 ok
St ack<Type> typeStack; // ok
/...

www. pragsoft.com Chapter 9: Templates 177

Nontype

Parameters

Listing 9.39

O©CO~NOUDWNPE

10
11
12

Unlike a function template, not al parameters of a class template are required to
represents types. Vaue parameters (of defined types) may also be used. Listing
9.39 shows a variation of the St ack class, where the maximum size of the sack is
denoted by atemplate parameter (rather than a data member).

tenpl ate <cl ass Type, int naxS ze>
class Stack {
publ i c:
Stack (void) : st ack(new Type[naxSi ze]), top(-1) {}
~Stack (void) {delete [] stack;}
voi d Push (Type &val);
voi d Pop (voi d) {if (top >=0) --top;}
Type &Top (voi d) {return stack[top];}
private:
Type *st ack; /1 stack array
i nt t op; /1 index of top stack entry

1

Both parameters are now required for referring to St ack outside the class.
For example, Push is now defined asfollows:

tenpl ate <cl ass Type, int naxS ze>
voi d Stack<Type, maxS ze>::Push (Type &val)
{

if (top+l < naxS ze)
stack[++top] = val;

}

Unfortunately, the operator << cannot be defined as before, since vaue
template parameters are not alowed for nonmember functions:

tenpl ate <cl ass Type, int naxS ze> /1 illegal!
ostream &operator << (ostrean® Stack<Type, naxS ze>&);

Ingtantiating the St ack template now requires providing two arguments. a
defined type for Type and a defined integer vadue for naxSi ze. The type of the
vaue mugt match the type of vaue parameter exactly. The vaue itsedf must be a
constant expression which can be evaluated at compile-time. For example:

Stack<int, 10> sli; /1 ok

Stack<int, 10u> s2; /1 illegal! 10u doesn't natch int
Stack<int, 5+5> s3; /1 ok

int n=10;

Sack<int, n> s4; [l illegal! nis arun-tinme value

178

C++ Essentials Copyright © 2005 PragSoft

Class Template Specialization

The dgorithms defined by the member functions of a class template may be
ingppropriate for certain types. For example, ingtantiating the St ack dass with the
type char* may lead to problems because the Push function will smply push a
dring pointer onto the stack without copying it. As aresult, if the origind dring is
destroyed the stack entry will be invaid.

Such cases can be properly handled by specializing the inappropriate member
functions. Like a globd function template, a member function of a class template is
specidized by providing an implementation of it based on a particular type. For
example,

voi d Stack<char*>:: Push (char* &val)

{
if (top+l < maxSize) {
stack[++top] = new char[strlen(val) + 1];
strcpy(stack[top], val);
}
}

specidizes the Push member for the char * type. To free the dlocated storage,
Pop needsto be specidized aswell:

voi d Stack<char*>:: Pop (void)
{
if (top >=0)
del ete stack[top--];
}

It is dso possble to specidize a class template as a whole, in which case dl
the class members must be specidized as a part of the process:

typedef char* Str;
class Stack<Str> {
publ i c:
Stack<Str>::Stack (int max) : stack(new Str[nax]),
top(-1), naxS ze(max) {}
~Stack (void) {del ete [] stack;}
voi d Push (Str val);
voi d Pop (void);

Sr Top (voi d) {return stack[top];}
friend ostrean& operator << (ostrean® Stack<Str>&);
private:
Str *st ack; /1l stack array
i nt t op; /1 index of top stack entry
const int naxs ze; /1 max size of stack
b
Although the friend declaration of << is necessary, because this is a
nonmember function, its earlier definition suffices. O

www. pragsoft.com Chapter 9: Templates 179

Class Template Members

A class template may have congtant, reference, and static members just like an
ordinary class. The use of congtant and reference members is exactly as before.
Static data members are shared by the objects of an indtantiation. There will
therefore be an ingtance of each datic data member per ingtantiation of the class
template.

As an example, consder adding a static data member to the St ack class to
enable Top to return avaue when the stack is empty:

tenpl at e <cl ass Type>
class Stack {

publ i c:
/...
Type& Top (void);
private:
/...
static Type durmy; /!l dummy entry

b

tenpl ate <cl ass Type>
Type& St ack<Type>:: Top (void)

{
return top >= 0 ? stack[top] : dumy;

}

There are two ways in which a datic data member can be initidized: as a
template or as a specific type. For example,

tenpl ate <cl ass Type> Type Stack<Type>::dumy = O;

provides atemplate initidization for dunmy. Thisisingantiated for each ingantiation
of S ack. (Note, however, that the value O may be inappropriate for non-numeric
types).

Alternatively, an explicit instance of this initidization may be provided for each
indantiation of Stack. A St ack<i nt > ingantiation, for example, could use the
falowing initidization of durmy:

int Stack<int>::dumy = 0;

180 C++ Essentials Copyright © 2005 PragSoft

Class Template Friends

When a function or class is declared as a friend of a class template, the friendship
can take one of there forms, asilludirated by the following example.
Condgder the St ack class template and a function template named Foo:

tenpl ate <class T> void Foo (T&);

We wish to define a class named Sanpl e and declare Foo and Stack as its
friends. The following makes a specific indance of Foo and St ack friends of all
ingtances of Sanpl e:

tenpl ate <class T>

class Sanpl e { /1 one-to-nany friendship
friend Foo<int>;
friend S ack<int>;
/...

b

Alternatively, we can make each indance of Foo and St ack a friend of its
corresponding ingance of Sanpl e:

tenpl ate <class T>

class Sanpl e { /1l one-to-one friendship
friend Foo<T>;
friend Stack<T>;
/...

b

This means that, for example, Foo<i nt> and Stack<int> ae friends of
Sanpl e<i nt >, but not Sanpl e<doubl e>.

The extreme case of making all ingances of Foo and St ack friends of all
ingtances of Sanpl e is expressed as.

tenpl ate <class T>

class Sanpl e { /1l nmany-to-many friendship
tenplate <class T> friend Foo;
tenplate <class T> friend class Stack;
/...

b

The choice as to which form of friendship to use depends on the intentions of

the programmer.
!

www. pragsoft.com Chapter 9: Templates 181

Example: Doubly-linked Lists

A container type is a type which in turn contains objects of another type. A
linked-list represents one of the smplest and most popular forms of container
types. It consigts of a set of eements, each of which contains a pointer to the next
element in the lig. In a doubly-linked ligt, each eement aso contains a pointer to
the previous dement in the lig. Figure 9.20 illudrates a doubly-linked list of
integers.

Figure 9.20 A doubly-linked list of integers.

Fst= /1 10 | Je—L [20 | Te—L | 30 e Lt

Because a container class can conceivably contain objects of any type, it is
best defined as a class template. Listing 9.40 show the definition of doubly-linked
lists as two class templates.

Listing 9.40
1 | #i ncl ude <i ostream h>

enum Bool {false, true};
tenpl ate <cl ass Type> cl ass Li st; /1 forward decl aration

wWN

tenpl at e <cl ass Type>
class ListHem{

4
5
6 | public:
7 Li stE em (const Type elem) : val (el en)
8 {prev = next = 0;}
9 Type& Val ue (voi d) {return val ;}
10 Li stH ent Prev (voi d) {return prev;}
11 Li stH em * Next (voi d) {return next;}
12 friend class List<Type>; // one-to-one friendship
13 | protected:
14 Type val ; /1 the el enent val ue
15 Li stH em *prev,; /1 previous element in the |ist
16 Li stH em *next; /1 next elenent in the list
17 | };
18 | /- mm e e
19 | tenpl ate <cl ass Type>
20 | class List {
21 | public:
22 Li st (void) {first =1last =0;}
23 ~Li st (void);
24 virtual void Insert (const Type&);
25 virtual void Rermove (const Type&);
26 virtual Bool Menber (const Type&);
27 friend ostream& operator <<(ostrean& List&);
28 | protected:
29 Li st B enxType> *first; // first element in the |ist
30 Li stBH enxType> *last; // last elenent in the |ist
31 [}

182 C++ Essentials Copyright © 2005 PragSoft

Annotation

3

This forward declaration of the Li st class is necessary because Li st H em
refersto Li st before the latter’ s definition.

5-17 Li st H emrepresents a list eement. It conssts of a vaue whose type is

20
24
25
26
27

denoted by the type parameter Type, and two pointers which point to the
previous and next ementsin thelid. Li st is declared as a one-to-one friend
of Li st H em because the former's implementation requires access to the
nonpublic members of the latter.

Li st represents adoubly-linked list.

I nsert insartsanew dement in front of thelist.

Renove removes the list dement, if any, whose vaue matches its parameter.
Member returnstrueif val isinthelist, and fase otherwise.

Operator << isoverloaded for the output of lists.

29-30 First andl ast, respectivdy, point to the first and last dement in the ligt.

Note that these two are declared of type ListH enxType>* and not
Li st B ent, because the declaration is outsde the Li st H emclass.

I nsert, Renove, and B enent are dl defined as virtud to dlow a class derived
fromLi st to overide them.

All of the member functions of Li st B emare defined inline The definition of

Li st member functionsis asfollows

tenpl ate <cl ass Type>

Li st <Type>:: ~Li st (voi d)

{
Li st B enxType> *handy;
Li st B enxType> *next ;

for (handy = first; handy != 0; handy = next) {
next = handy- >next;
del et e handy;

}

www. pragsoft.com Chapter 9: Templates 183

tenpl ate <cl ass Type>
voi d Li st<Type>::Insert (const Type &el en)

{
Li st B enxType> *handy = new Li st H enxType>(el en);
handy- >next = first;
if (first 1=0)
first->prev = handy;
if (last == 0)
| ast = handy;
first = handy;
}
R e e E TP L LT

tenpl ate <cl ass Type>
voi d Li st <Type>: : Renove (const Type &val)

{
Li st H enxType> *handy;

for (handy = first; handy != 0; handy = handy->next) {
if (handy->val == val) {
i f (handy->next != 0)
handy- >next - >prev = handy- >pr ev;
el se
| ast = handy- >prev;
i f (handy->prev != 0)
handy- >pr ev- >next = handy- >next ;
el se
first = handy->next;
del et e handy;

tenpl ate <cl ass Type>
Bool Li st<Type>:: Menber (const Type &val)

{
Li st B enxType> *handy;
for (handy = first; handy != 0; handy = handy->next)
if (handy->val == val)
return true
return fal se
}

The << is overloaded for both classes. The overloading of << for Li st B em
does not require it to be declared a friend of the class because it is defined in terms
of public members only:

184 C++ Essentials Copyright © 2005 PragSoft

tenpl ate <cl ass Type>
ostreanm& operator << (ostream &os, ListH enxType> &el en)

{
0s << el em Val ue();
return os;
}
R e R E LR T

tenpl ate <cl ass Type>
ostrean& operator << (ostream &os, List<Type> &ist)

{
Li st Bl enxType> *handy = list.first;
0s << "< ":
for (; handy != 0; handy = handy->Next())
0s << *handy << ' ';
0sS << '>';:
return os;
}

Hereisasmple test of the class which creates the list shown in Figure 9.20:

int nain (void)

{

Li st<i nt> list;

list.Insert(30);

list.Insert(20);

list.Insert(10);

cout << "list =" << list << '\n';

if (list.Menber(20)) cout << "20 is in list\n";
cout << "Renoved 20\ n";

l'i st. Remove(20);

cout << "list =" << list << '\n';

return O;

}
It will produce the following outpui:

list =< 10 20 30 >
20isin list
Renoved 20

< 10 30 >

www. pragsoft.com Chapter 9: Templates 185

Derived Class Templates

Listing 9.41

OO~ WNE

A classtemplate (or its ingtantiation) can serve as the base of aderived class.

tenpl at e <cl ass Type>
class SmartList : public List<Type>; /1 tenpl ate base

class Primes : protected List<int>; /1 instantiated base

A template base class, such as Li st , should aways be accompanied with its
parameter lig (or arguments if ingtantiated). The following is therefore invaid:

tenpl at e <cl ass Type>
class SmartList : public List; /1 illegal! <Type> m ssing

It would be equdly incorrect to attempt to derive a nontemplate class from a
(non-ingantiated) template class:

class SmartList : public List<Type> // illegal! tenplate expected

It is, however, perfectly acceptable for anormd class to serve asthe base of a
derived template class:

class X
tenpl ate <class Type> class Y : X /1 ok

As an example of aderived class template, consder deriving a Set class from
Li st. Given that a set congsts of unique elements only (i.e,, no repetitions), al we
need to do is override the | nsert member function to ensure this (see Ligting
9.24).

tenpl ate <cl ass Type>
class Set : public List<Type> {
publ i c:
virtual void Insert (const Type &val)
{if (!Menber(val)) List<Type> :lnsert(val);}
};

186

C++ Essentials Copyright © 2005 PragSoft

Exercises

9.50 Define a Snap function template for swapping two objects of the same type.

9.51 Rewrite the Bubbl eSort function (Exercise 5.4) as a function template. Provide a
gpecidization of the function for strings.

9.52 Rewrite the Bi naryTree class (Exercise 6.6) as a class template. Provide a
specidization of the dassfor grings.

9.53 Rewrite the Dat abase, BTree, and BStar classes (Exercise 8.4) as class
templates.

www. pragsoft.com Chapter 9: Templates 187

10. Exception Handling

An exception is a runtime error. Proper handling of exceptions is an important
programming issue. This is because exceptions can and do happen in practice and
programs are generaly expected to behave gracefully in face of such exceptions.
Unless an exception is properly handled, it is likely to result in abnorma program
termination and potentid loss of work. For example, an undetected division by zero
or dereferencing of an invaid pointer will dmogt certainly terminate the program
aoruptly.

Exception handling consigts of three things: (i) the detecting of arun-time error,
(if) rading an exception in response to the error, and (ii) taking corrective action.
The latter is called recovery. Some exceptions can be fully recovered from so that
execution can proceed unaffected. For example, an invdid argument value passed
to afunction may be handled by substituting a reasonable default vaue for it. Other
exceptions can only be patidly handled. For example, exhaustion of the hegp
memory can be handled by abandoning the current operation and returning to a
date where other operations (such as saving the currently open files to avoid losng
their contents) can be attempted.

C++ provides alanguage facility for the uniform handling of exceptions. Under
this scheme, a section of code whose execution may lead to run-time errors is
labeled as a try block. Any fragment of code activated during the execution of a
try block can raise an exception using a throw clause. All exceptions are typed
(i.e, each exception is denoted by an object of a specific type). A try block is
followed by one or more catch clauses. Each caich clause is respongble for the
handling of exceptions of a particular type.

When an exception is raised, its type is compared againg the catch clauses
following it. If a matching dause is found then its handler is executed. Otherwise,
the exception is propagated up, to an immediately enclosing try block (if any). The
process is repeated until either the exception is handled by a matching catch clause
or it is handled by a default handler.

188 C++ Essentials Copyright © 2005 PragSoft

Flow Control

Figure 10.21 illudrates the flow of control during exception handling. It shows a
function e with atry block from which it calls f; f calls another function g from its
own try block, which in turn cals h. Each of the try blocks is followed by alist of
catch clauses. Function h throws an exception of type B. The enclosing try block's
catch clauses are examined (i.e, A and E); neither matches B. The exception is
therefore propagated to the catch clauses of the enclosing try block (i.e., C and D),
which do not match B either. Propagating the exception further up, the catch
clausesfollowing thetry block in e (i.e,, A, B, and C) are examined next, resulting
in ametch.

At this point flow of control is transferred from where the exception was raised
in h to the catch clause in e. The intervening stack frames for h, g, and f are
unwound: al automatic objects created by these functions are properly destroyed
by implicit cdlsto their destructors.

Figure 10.21 Flow control in exception handling.

function e
try block function f
f(...);
try block function g
catch clauses try block function h
B g} »
C catch clauses
c catch clauses throw B
D A
E

Two points are worth noting. Firgt, once an exception is raised and handled by
amatching catch clause, the flow of control is not returned to where the exception
was raised. The best that the program can do is to re-attempt the code that
resulted in the exception (e.g., cdl f again in the above example). Second, the only
role of acatch clausein lifeis to handle exceptions. If no exception is raised during
the execution of atry block, then the catch clauses following it are smply ignored.

www. pragsoft.com Chapter 10: Exception Handling 189

The Throw Clause

An exception israised by athrow dause, which has the generd form
t hr ow object;

where object is an object of a built-in or user-defined type. Since an exception is
meatched by the type of object and not its vaue, it is customary to define classes for
this exact purpose.

For example, recdl the Stack class template discussed in Chapter 9 (see
Ligting 10.42).

Listing 10.42
1 | tenpl ate <class Type>
2 | class Stack {
3 | public:
4 Stack (int max);
5 ~Stack (void) {del ete [] stack;}
6 voi d Push (Type &val);
7 voi d Pop (voi d);
8 Type& Top (void);
9 friend ostrean& operator << (ostrean®& Stack<Type>);
10 | private:
11 Type *st ack;
12 i nt t op;
13 const int naxs ze;
14 | };

There are a number of potentid run-time errors which may affect the member
functionsof St ack:

The congtructor parameter nax may be given a nonsengca vaue. Also, the
congructor’s attempt at dynamicaly alocating storage for st ack may fal due
to heap exhaugtion. We raise exceptions BadS ze and HeapFai | in response
to these:

tenpl at e <cl ass Type>
St ack<Type>:: Stack (int max) : maxS ze(nax)

{
if (max <= 0)
t hrow BadS ze();
if ((stack = new Type[nax]) == 0)
t hrow HeapFai | ();
top = -1;
}

An atempt to push onto a full stack results in an overflow. We raise an
Over f | owexception in response to this:

190

C++ Essentials Copyright © 2005 PragSoft

tenpl at e <cl ass Type>
voi d Stack<Type>:: Push (Type &val)

{
if (top+l < naxS ze)
stack[++top] = val;
el se
throw OQverflow();
}

An attempt to pop from an empty stack results in an underflow. We raise an
Under f | owexception in responseto this:

tenpl at e <cl ass Type>
voi d St ack<Type>:: Pop (void)

{
if (top >= 0)
--top;
el se
t hrow Underfl ow();
}

Attempting to examine the top dement of an empty stack is clearly an error.
Weraise an Enpt y exception in response to this:

tenpl at e <cl ass Type>
Type &St ack<Type>:: Top (void)

{
if (top <0)
t hrow Enpt y();
return stack[top];
}

Suppose that we have defined a class named Error for exception handling
purposes. The above exceptions are easily defined as derivations of Er ror :

class Error {/1* ... %},
class BadSize : public Eror {};
class HeapFail : public Error {};

class Qverflow : public Error {};
class Underflow: public Error {};
class Enpty : public Error {};

www. pragsoft.com Chapter 10: Exception Handling 191

The Try Block and Catch Clauses

A code fragment whose execution may potentialy raise exceptionsis enclosed by a
try block, which has the generd form

try {
statements
}

where statements represents one or more semicolon-terminated statements. In
other words, a try block is like a compound statement preceded by the try
keyword.

A try block is followed by catch clauses for the exceptions which may be
raised during the execution of the block. The role of the catch clauses is to handle
the respective exceptions. A catch clause (dso cdled a handler) has the generd
form

catch (type par) { statements}

where type is the type of the object raised by the matching exception, par is
optiond and is an identifier bound to the object raised by the exception, and
statements represents zero or more semicolon-terminated statements.

For example, continuing with our St ack class, we may write:

try {
S ack<i nt> s(3);
s. Push(10);
/...
s. Pop() ;
/...

}
catch (Underfl ow) {cout << "Stack underflown";}

catch (CQverfl ow {cout << "Stack overflown";}
catch (HeapFail) {cout << "Heap exhausted\n";}
catch (BadS ze) {cout << "Bad stack size\n";}
catch (Enpty) {cout << "Empty stack\n";}

For amplicity, the cat ch dlauses here do nothing more than outputting a relevant
message.

When an exception is raised by the code within the try block, the catch clauses
are examined in the order they appear. The first matching catch clause is sdlected
and its satements are executed. The remaining catch clauses are ignored.

A catch clause (of type C) matches an exception (of type E) if:

C and E are the same type, or

Oneisareference or constant of the other type, or

192 C++ Essentials Copyright © 2005 PragSoft

Oneis anonprivate base class of the other type, or

Both are pointers and one can be converted to another by implicit type
converson rules.

Because of the way the catch clauses are evaluated, their order of appearance
is sgnificant. Care should be taken to place the types which are likely to mask
other types last. For example, the clause type voi d* will maich any pointer and
should therefore appear after other pointer type clauses.

try {
/...
}

catch (char*) {I*...*}
catch (Point*) {/*...*/}
catch (voi d*) {1*...*1}

The specid catch clause type
catch (...) {I1* ... *}

will match any exception type and if used, like a default case in a switch Satement,
should aways appear las.

The statements in a catch clause can dso throw exceptions. The case where
the matched exception is to be propagated up can be sgnified by an empty throw:

catch (char*) {
/...
t hrow, /1 propagate up the exception

}

An exception which is not matched by any catch clause after a try block, is
propagated up to an enclosing try block. This process is continued until ether the
exception is matched or no more enclosing try block remains. The latter causes the
predefined function t er m nat e to be caled, which smply terminates the program.
This function has the following type:

typedef voi d (*Terniun) (voi d);

The default t er m nat e function can be overridden by caling set _termnate
and passing the replacing function as its argument:

Ter nfFun set _t erm nat e(Ter mFun) ;

Set _t er m nat e returns the previous setting.

www. pragsoft.com Chapter 10: Exception Handling 193

Function Throw Lists

It isagood programming practice to gpecify what exceptions a function may throw.
This enables function users to quickly determine the list of exceptions that ther
code will have to handle. A function prototype may be appended with a throw list
for this purpose:

type function (parameters) t hr ow (exceptions);

where exceptions denotes alist of zero or more comma-separated exception types
which function may directly or indirectly throw. The ligt is dso an assurance that
function will not throw any other exceptions.

For example,

void Encrypt (File & n, File &ut, char *key)
throw (I nvalidKey, BadFile, const char*);

specifies that Encrypt may throw an | nval i dKey, BadFi | e, or const char*
exception, but none other. An empty throw list specifies that the function will not
throw any exceptions.

void Sort (List list) throw ();

In absence of athrow ligt, the only way to find the exceptions that a function
may throw is to study its code (including other functions that it cdls). It is generdly
expected to at least define throw ligts for frequently-used functions.

Should afunction throw an exception which is not specified in its throw ligt, the
predefined function unexpect ed is caled. The default behavior of unexpect ed is
to terminate the program. This can be overridden by caling set _unexpect ed
(which has the same dgnature as set _termnate) and passing the replacing
function as its argument:

Ter nfFun set _unexpect ed(Ter nfun) ;

As before, set _unexpect ed returns the previous setting.

194

C++ Essentials Copyright © 2005 PragSoft

Exercises

10.54 Consder the following function which is used for receiving a packet in a network
Sysem:

voi d Recei vePacket (Packet *pack, Connection *c)

{
swi tch (pack->Type()) {

case contr ol Pack: /...
br eak;
case dat aPack: /...
br eak;
case di agnosePack: //...
br eak;
defaul t: /...

}

Suppose we wish to check for the following errorsin Recei vePacket :
That connection ¢ isactive. Connect i on: : Acti ve() will reurn true if thisis
the case.

That no erors have occurred in the transmisson of the packet.
Packet : : Val i d() will return trueif thisisthe case.
That the packet typeis known (the def aul t caseis exercised otherwise).

Define suitable exceptions for the above and modify Recei vePacket <o that it
throws an appropriate exception when any of the above casesis not satisfied. Also
define athrow lig for the function.

10.55 Define appropriate exceptions for the Mat ri x class (see Chapter 7) and modify its
functions so that they throw exceptions when errors occur, including the following:

When the sizes of the operands of + and - are not identica.

When the number of the columns of the first operand of * does not match the
number of rows of its second operand.

When the row or column specified for () isoutsde itsrange.

When hesgp storage is exhausted.

www. pragsoft.com Chapter 10: Exception Handling 195

11.

Table 11.15

Table 11.16

Table 11.17

The IO Library

C++ has no built-in Input/Output (I10) capability. Ingtead, this capability is
provided by alibrary. The standard C++ |O library is caled the iostream library.
The definition of the library classes is divided into three header files. An additiond
header file defines a set of manipulators which act on streams. These are
summarized by Table 11.15.

Figure 11.22 relates these header files to a class hierarchy for a UNIX-based
implementation of the iostream class hierarchy. The highest-level classes appear
unshaded. A user of the iogtream library typically works with these classes only.
Table 11.16 summarizes the role of these high-levd dasses. The libray adso
provides four predefined stream objects for the common use of programs. These

are summarized by Table 11.17.
lostream header files.
Header File Description
iostreamh Defines a hierarchy of classes for low-level (untyped character-
level) 1O and high-level (typed) IO. This includes the definition of
thei 0s,i streamostream andi ost r eamclasses.
fstreamh Derives a set of classes from those defined ini ost r eam h for

file 10. This includes the definition of thei f st r eam of st r eam
and f st r eamclasses.

strstreamh

Derives a set of classes from those defined ini ost r eam h for
10 with respect to character arrays. This includes the definition of
thei strstreamostrstreamandstrstreamclasses.

i omani p. h

Defines a set of manipulator which operate on streams to produce
useful effects.

Highest-level iostream classes.
Form of 10 Input Output Input and Output
Standard 10 i stream ostream i ostream
File 10 i fstream of stream fstream
Array of char 10 i strstream ostrstream strstream

Predefined streams.
Stream Type Buffered | Description
cin i stream Yes Connected to standard input (e.g., the keyboard)
cout ostream Yes Connected to standard output (e.g., the monitor)
cl og ostream Yes Connected to standard error (e.g., the monitor)
cerr ostream No Connected to standard error (e.g., the monitor)

196

C++ Essentials

Copyright © 2005 PragSoft

A stream may be used for input, output, or both. The act of reading data from
an input stream is cdled extraction. It is perfformed using the >> operator (called
the extraction operator) or an iostream member function. Similarly, the act of
writing data to an output stream is cdled insertion, and is performed using the <<
operator (caled the insertion operator) or an iostream member function. We
therefore peak of ‘extracting data from an input stream’ and ‘inserting data into an
output stream’.

Figure 11.22 lostream class hierarchy.

iostream.h | unsafe_ios
\
[unsafe_istream] [unsafe_ostream] streambuf
v %
[istream ostream
| .
l lostream i
7
)
fstream.h filebuf
%
K v
fstreambase < [unsafe_fstreambase <
\ / \

[ifstream] [ofstream]

>L fstree?]

strstream.h

strstreambuf
K v
strstreambase unsafe_strstreambase

\ 4 y 3 Y
[Tstrstream ostrstream

\

strstream v means virtual base class

www. pragsoft.com Chapter 11: The IO Library 197

The Role of streambuf

The iogtream library is based on a two layer modd. The upper layer deds with
formatted 10 of typed objects (built-in or user-defined). The lower layer deals with
unformatted 10 of streams of characters, and is defined in terms of streambuf
objects (see Figure 11.23). All stream classes contain a pointer to a streambuf
object or one derived fromiit.

Figure 11.23 Two-layer 10 model.
inserted object extractei object

stream layer

streambuf layer

v
output chars input chars

The dreambuf layer provides buffering capability and hides the details of
physical 10 device handling. Under norma circumstances, the user need not worry
about or directly work with streambuf objects. These are indirectly employed by
streams. However, a basic understanding of how a streambuf operates makes it
easer to understland some of the operations of streams.

Think of a streambuf as a sequence of characters which can grow or shrink.
Depending on the type of the stream, one or two pointers are associated with this
sequence (see Figure 11.24):

A put pointer points to the position of the next character to be deposited into
the sequence as aresult of an insertion.

A get pointer points to the position of the next character to be fetched from
the sequence as aresult of an extraction.

For example, ost r eamonly has aput pointer, i st r eamonly has a get pointer, and
i ost r eamhas both pointers.

Figure 11.24 Streambuf put and get pointers.
get pointer

v
ldlalt la u lplrlelslelnltu l !...sequence
putp+ointer

When a stream is cregted, a streambuf is associated with it. Therefore, the
stream classes provide congtructors which take a st reanbuf * argument. Al
stream classes overload the insartion and extraction operators for use with a
st reanbuf * operand. The insertion or extraction of a streambuf causes the entire
stream represented by it to be copied. O

198 C++ Essentials Copyright © 2005 PragSoft

Stream Output with ostream

Ostream provides formatted output capability. Use of the insertion operator << for
stream output was introduced in Chapter 1, and employed throughout this book.
The overloading of the insertion operator for user-defined types was discussed in
Chapter 7. This section looks at the ostream member functions.

The put member function provides a smple method of insarting a single
character into an output stream. For example, assuming that os is an ostream
object,

os.put('a');
insarts' a' into os.
Smilaly, wite inserts a gring of characters into an output stream. For
example,
os.wite(str, 10);
insartsthefirst 10 characters from st r into os.

An output sream can be flushed by invoking its f1 ush member function.
Flushing causes any buffered data to be immediately sent to outpuit:

os. flush(); /1 flushes the os buffer

The position of an output stream put pointer can be queried usng tel | p and
adjusted using seekp. For example,

0s. seekp(os.tellp() + 10);

moves the put pointer 10 characters forward. An optional second argument to
seekp enables the postion to be specified reatively rather than absolutely. For
example, the aboveis equivaent to:

0s. seekp(10, ios::cur);

The second argument may be one of:
i 0s: : beg for postionsrelative to the beginning of the stream,

i os: : cur for pogtionsrelative to the current put pointer position, or

i os: : end for postions relative to the end of the stream.

These are defined as a public enumeration inthei os class.

Table 11.18 summarizes the ostream member functions. All output functions
with an ost rean& return type, return the stream for which they are invoked.
Multiple calls to such functions can be concatenated (i.e., combined into one
satement). For example,

www. pragsoft.com Chapter 11: The IO Library 199

os.put('a).put('b');
isvdid and is equivdent to:

os.put('a');
os.put('b);

Table 11.18 Member functions of ostream.

ostream (streanbuf*);
The constructor associates a streambuf (or its derivation) with the
class to provide an output stream.
ostream& put (char);
Inserts a character into the stream.
ostream% wite (const signed char*, int n);
ostream& write (const unsigned char*, int n);
Inserts n signed or unsigned characters into the stream.
ostream& flush ();
Flushes the stream.

long tellp ();
Returns the current stream put pointer position.
ostream% seekp (long, seek dir = ios::beg);

Moves the put pointer to a character position in the stream relative to
the beginning, the current, or the end position:
enum seek _dir {beg, cur, end};

200 C++ Essentials Copyright © 2005 PragSoft

Stream Input with istream

Istream provides formatted input capability. Use of the extraction operator >> for
sream input was introduced in Chapter 1. The overloading of the extraction
operator for user-defined types was discussed in Chapter 7. This section looks at
the istream member functions.

The get member function provides a smple method of extracting a single
character from an input stream. For example, assuming that i s isan istream object,

int ch =is.get();

extracts and returns the character denoted by the get pointer of i s, and advances
the get pointer. A variation of get, cdled peek, does the same but does not
advance the get pointer. In other words, it alows you to examine the next input
character without extracting it. The effect of a cdl to get can be canceled by
cdling put back which deposits the extracted character back into the stream:

i s. put back(ch);

Thereturn type of get and peek isani nt (not char). Thisis because the end-of-
file character (ECF) isusudly given the vaue -1.

The behavior of get is different from the extraction operator in that the former
does not skip blanks. For example, an input line condisting of

Xy

(i.e,' x', space, ' y', newline) would be extracted by four cdls to get . the same
line would be extracted by two applications of >>.
Other variations of get are aso provided. See Table 11.19 for asummary.
The read member function extracts a gring of characters from an input
stream. For example,

char buf[64];
i s.read(buf, 64);

extracts up to 64 charactersfrom i s and depogits them into buf . Of course, if ECF
is encountered in the process, less characters will be extracted. The actuad number
of characters extracted is obtained by cdling gcount .

A vaiation of read, cdled getl i ne, dlows extraction of characters until a
user-specified delimiter is encountered. For example,

is.getline(buf, 64, "\t');

is dmilar to the above cdl to read but stops the extraction if a tab character is
encountered. The delimiter, athough extracted if encountered within the specified
number of characters, is not deposited into buf .

www. pragsoft.com Chapter 11: The IO Library 201

Input characters can be skipped by calling i gnor e. For example,
is.ignore(10, '\n");

extracts and discards up to 10 characters but stops if a newline character is
encountered. The ddimitersitself isaso extracted and discarded.

The pogition of an input stream get pointer can be queried usng tel | g and
adjusted using seekg. For example,

is.seekp(is.tellg() - 10);

moves the get pointer 10 characters backward. An optional second argument to
seekg enables the postion to be specified reatively rather than absolutely. For
example, the aboveis equivaent to:

i s.seekg(-10, ios::cur);

Aswith seekp, the second argument may be one of i os: : beg, i os: : cur, or
i 0s:: end.

Table 11.19 summarizes the idream member functions. All input functions with
an i strean& return type, return the stream for which they are invoked. Multiple
calsto such functions can therefore be concatenated. For example,

i s.get(chl).get(ch2);
isvaid and is equivaent to:

is.get(chl);
i s.get(ch2);

Thei ost r eamdlass is derived from the i st reamand ost r eam classes and
inherits their public members as its own public members.

class iostream: public istream public ostream{
/...
b

An iostream object is used for both insertion and extraction; it can invoke any of
the functionslisted in Tables 11.18 and 11.19.

202

C++ Essentials Copyright © 2005 PragSoft

Table 11.19 Member functions of istream.

stream (streanbuf*)
The constructor associates a streambuf (or its derivation) with the
class to provide an input stream.

nt get ();

stream& get (signed charg&);

stream& get (unsigned char&);

stream& get (streanbufé& char = '\n");
The first version extracts the next character (including EOF). The
second and third versions are similar but instead deposit the character
into their parameter. The last version extracts and deposit characters
into the given streambuf until the delimiter denoted by its last
parameter is encountered.

nt peek ();
Returns the next input character without extracting it.

stream& put back (char);
Pushes an extracted character back into the stream.

stream& read (signed char*, int n);

stream& read (unsigned char*, int n);
Extracts up to n characters into the given array, but stops if ECF is

encountered.
i stream& getline (signed char*, int n, char = '\n");
i stream& getline (unsigned char*, int n, char = '"\n");

Extracts at most n- 1 characters, or until the delimiter denoted by the
last parameter or ECF is encountered, and deposit them into the given
array, which is always null-terminated. The delimiter, if encountered
and extracted, is not deposited into the array.

nt gcount ();
Returns the number of characters last extracted as a result of calling
readorgetline.

stream& ignore (int n =1, int = EOF);
Skips up to N characters, but extracts and stops if the delimiter denoted
by the last parameter is encountered.

long tellg ();
Returns the current stream get pointer position.
i stream& seekg (long, seek dir = ios::cur);

Moves the get pointer to a character position in the stream relative to
the beginning, the current, or the end position:

enum seek _dir {beg, cur, end};

www. pragsoft.com Chapter 11: The IO Library 203

Using the ios Class

Table 11.20

los provides capabilities common to both input and output streams. It uses a
streambuf for buffering of data and maintains operationd information on the sate of
the streambuf (i.e., 1O errors). It dso keeps formatting information for the use of its
client classes (e.g., istream and ostream).

The definition of ios contains a number of public enumerations whose vaues
are summarized by Table 11.20. The i o_st at e values are used for the state
data member which is a bit vector of 10 error flags. The formatting flags are used
for the x_f | ags data member (a bit vector). The open_node vaues are bit flags
for specifying the opening mode of a stream. The seek_di r vaues ecify the
seek direction for seekp and seekg.

Useful public enumerations in ios.

enum i o_state:
i 0s::goodbit
i os::eofbit
i 0s:: badbit
ios::failbit
i 0s:: hardfai

Provides status flags (fori os: : st at e).

When st at e is set to this value, it means that all is ok.
End-of-file has been reached.

An invalid operation has been attempted.

The last IO operation attempted has failed.

An unrecoverable error has taken place.

Anonymous enum

ios::left

i 0s::right
ios::interna
i 0s::dec

i 0s::oct

i 0s:: hex

i
i

i

i

i

i 0s:: showbase
i 0s::showpoi nt
i 0S::uppercase
i 0s::showpos
ios::fixed
ios::scientifi
i 0s::ski pws

i 0s::unitbuf

Provides formatting flags.
Left-adjust the output.
Right-adjust the output.

Output padding indicator.
Convert to decimal.

Convert to octal.
Convert to hexadecimal.

Show the base on output.

Show the decimal point on output.

Use upper case for hexadecimal output.
Show the + symbol for positive integers.
Use the floating notation for reals.

Use the scientific notation for reals.

Skip blanks (white spaces) on input.
Flush all streams after insertion.

enum open_node:

os::in
0s: : out
0s::app
os::ate
os::trunc

os: :norepl ace
0s::nocreate

i
i
i
i
i
i
i
i 0s:: binary

Provides values for stream opening mode.
Stream open for input.
Stream open for output.

Append data to the end of the file.

Upon opening the stream, seek to EOF.
Truncate existing file.

Open should fail if file already exists.

Open should fail if file does not already exist.
Binary file (as opposed to default text file).

enum seek_dir:

i 0s:: beg
i os::cur
ios::end

Provides values for relative seek

Seek relative to the beginning of the stream.

Seek relative to the current put/get pointer position.
Seek relative to the end of the stream.

204

C++ Essentials

Copyright © 2005 PragSoft

IO operations may result in 10 errors, which can be checked for using a
number of ios member functions. For example, good returns nonzero if no error
has occurred:

if (s.good())
/] all is ok...

where s isan iostream. Smilarly, bad returns nonzero if an invaid 10 operation has
been attempted:

if (s.bad())
/] invalid | O operation...

and fai |l returnstrue if the last attempted 10 operation has falled (or if bad() is
true):

if (s.fail())
/1l last 10 operation fail ed...

A shorthand for thisis provided, based on the overloading of the! operator:

if (!s) /] same as: if (s.fail())
...

The opposite shorthand is provided through the overloading of the voi d* o that it
returns zerowhen f ai | returns nonzero. This makes it possible to check for errors
in the following fashion:

if (cin>> str)
/! no error occurred

The entire error bit vector can be obtained by caling r dst at e, and cleared by
cdling cl ear . User-defined 1O operations can report errors by caling set st at e.
For example,

s.setstate(ios::eofbit | ios::badbit);

setsthe eof bi t and badbi t flags.

los dso provides various formetting member functions. For example,
preci sion can be used to change the precison for displaying floating point
numbers.

cout . preci sion(4);
cout << 233.123456789 << '\n';

Thiswill produce the output:

233. 1235

www. pragsoft.com Chapter 11: The IO Library 205

The wi dt h member function is used to specify the minimum width of the next
output object. For example,

cout . w dt h(5);
cout << 10 << '\n';

will use exactly 5 character to display 10:

10

An object requiring more than the specified width will not be restricted to it. Also,
the specified width gpplies only to the next object to be output. By default, spaces
are used to pad the object up to the specified minimum size. The padding character
can bechanged using fi | | . For example,

cout.w dth(5);

cout. fill("*");
cout << 10 << '\n';

will produce:

***10

The formatting flags liged in Table 11.20 can be manipulated usng the set f
member function. For example,

cout.setf(ios::scientific);
cout << 3.14 << '\n';

will dislay:
3. 14e+00

Another verson of set f takes a second argument which specifies formaiting flags
which need to be reset beforehand. The second argument is typically one of:

ios::basefield ©° ios::dec | ios::oct | ios::hex
ios::adjustfield © ios::left | ios::right | ios::interna
ios::floatfield © ios::scientific | ios::fixed

For example,

cout.setf(ios::hex | ios::uppercase, ios::basefield);
cout << 123456 << '\n'

will digplay:

1E240

C++ Essentials Copyright © 2005 PragSoft

Formatting flags can be reset by cdling unset f, and set as a whole or examined
by cdling f | ags. For example, to disable the skipping of leading blanks for an
input stream such asci n, we can write:

ci n.unsetf (i os: : ski pws) ;
Table 11.21 summarizes the member functions of ios.

Table 11.21 Member functions of ios.

i os (streanbuf*);
The constructor associates a streambuf (or its derivation) with the
class.

void init (streanbuf*);
Associates the specified streambuf with the stream.

streanbuf* rdbuf (void);
Returns a pointer to the stream’s associated streambuf.

int good (void);
Examines i 0S: : st at e and returns zero if bits have been set as a
result of an error.

int bad (void);
Examines the io0s::badbit and ios::hardfail bits in
i 0s:: st at e and returns nonzero if an 10 error has occurred.

int fail (void);
Examines the ios::failbit, i 0s:: badbit, and
i 0s::hardfail bitsin ios::state and returns nonzero if an
operation has failed.

int eof (void);
Examines thei 0s:: eof bit ini 0s:: st at e and returns nonzero if
the end-of-file has been reached.

void clear (int = 0);
Sets the i 0s: : st at e value to the value specified by the parameter.

void setstate (int);
Sets the i 0s: : st at e bits specified by the parameter.

int rdstate (void);
Returns i OS: : St at e.

int precision (void);

int precision (int);
The first version returns the current floating-point precision. The second
version sets the floating-point precision and returns the previous
floating-point precision.

int width (void);

int width (int);
The first version returns the current field width. The second version sets
the field width and returns the previous setting.

char fill (void);

char fill (char);
The first version returns the current fill character. The second version
changes the fill character and returns the previous fill character.

www. pragsoft.com Chapter 11: The IO Library 207

Il ong setf (long);

Il ong setf (long, long);
The first version sets the formatting flags denoted by the parameter.
The second version also clears the flags denoted by its second
argument. Both return the previous setting.

| ong unsetf (1ong);
Clears the formatting flags denoted by its parameter, and returns the
previous setting.

Il ong flags (void);

Il ong flags (long);
The first version returns the format flags (this is a sequence of
formatting bits). The second version sets the formatting flags to a given
value (| ags(0) restores default formats), and return the previous
setting.

ostreant tie (void);

ostreant tie (ostreant);
Returns the tied stream, if any, and zero otherwise. The second version
ties the stream denoted by its parameter to this stream and returns the
previously-tied stream. When two streams are tied the use of one
affects the other. For example, because ci n, cerr, and cl og are all
tied to cout , using any of the first three causes cout to be flushed
first.

O

208

C++ Essentials Copyright © 2005 PragSoft

Stream Manipulators

A manipulator is an identifier that can be inserted into an output stream or extracted
from an input stream in order to produce a desired effect. For example, endl isa
commonly-used manipulator which inserts a newline into an output stream and
flushesit. Therefore,

cout << 10 << endl;

has the same effect as:

cout << 10 << '\n';

In generd, most formatting operations are more easly expressed using
manipulatorsthan usng set f . For example,

cout << oct << 10 << endl;

ISan eeser way of saying:

cout.setf(ios::oct, ios::basefield);
cout << 10 << endl;

Some manipulators aso take parameters. For example, the set w manipulator
is used to set the field width of the next 1O object:

cout << setw(8) << 10;

/] sets the width of 10 to 8 characters

Table 11.22 summarizes the predefined manipulators of the iostream library.

Table 11.22 Predefined manipulators.
Manipulator Stream Type | Description
end| output Inserts a newline character and flushes the stream.
ends output Inserts a null-terminating character.
flush output Flushes the output stream.
dec input/output | Sets the conversion base to decimal.
hex input/output | Sets the conversion base to hexadecimal.
oct input/output | Sets the conversion base to octal.
Ws input Extracts blanks (white space) characters.
set base(int) input/output | Sets the conversion base to one of 8, 10, or 16.
resetiosflags(long) | input/output | Clears the status flags denoted by the argument.
seti osfl ags(l ong) input/output | Sets the status flags denoted by the argument.
setfill (int) input/output | Sets the padding character to the argument.
set preci sion(int) input/output | Sets the floating-point precision to the argument.
setw(int) input/output | Sets the field width to the argument.
O
www. pragsoft.com Chapter 11: The IO Library 209

File 10 with fstreams

A program which performs IO with respect to an externd file should include the
header file f st r eam h. Because the classes defined in this file are derived from
iogtream classes, f st r eam h dso includesi ost r eam h.

A file can be opened for output by creating an ofstream object and specifying
the file name and mode as arguments to the congtructor. For example,

of stream | og("l og.dat", ios::out);

opens a file named | og. dat for output (see Table 11.20 for a list of the open
mode values) and connects it to the ofstream | og. It is also possible to create an
ofstream object first and then connect the file later by cdling open:

of stream| og;
| og. open("l og.dat", ios::out);

Because ofgtream is derived from ogstream, dl the public member functions of
the latter can aso be invoked for ofstream objects. First, however, we should
check that the file is opened as expected:

if (!log)
cerr << "can't open 'log.dat'\n";

el se {
char *str = "A piece of text";
log.wite(str, strlen(str));
| og << endl;

}

The externd file connected to an ostream can be closed and disconnected by
cdlingcl ose:
| og. cl ose();

A file can be opened for input by creating an ifstream object. For example,

ifstreaminf("names.dat", ios::in);

opens the file nanes. dat for input and connects it to the ifstream i nf . Because
ifsream is derived from istream, al the public member functions of the latter can
a0 be invoked for ifstream objects.

The fdtream class is derived from iostream and can be used for opening afile
for input as well as output. For example:

fstreami of ;

i of . open("nares. dat", ios::out); /1 out put
iof << "Adamn";

210 C++ Essentials Copyright © 2005 PragSoft

Table 11.23

i of.close();

char nane[64];

i of . open("nanes.dat", ios::in); /1 input
i of >> nane;

i of.close();

Table 11.23 summarizes the member functions of ofstream, istream, and

fstream (in addition to those inherited from their base classes).

Member functions of ofstream, ifstream, and fstream.

of stream (voi d);

of stream (int fd);

of stream (int fd, char* buf, int size);

of stream (const char*, int=ios::out, int=filebuf::openprot);
The first version makes an ofstream which is not attached to a file. The
second version makes an ofstream and connects it to an open file
descriptor. The third version does the same but also uses a user-
specified buffer of a given size. The last version makes an ofstream
and opens and connects a specified file to it for writing.

i fstream (void);

ifstream (int fd);

ifstream (int fd, char* buf, int size);

i fstream (const char*, int=ios::in, int=filebuf::openprot);
Similar to ofstream constructors.

fstream (void);

fstream (int fd);

fstream (int fd, char* buf, int size);

fstream (const char*, int, int=fil ebuf::openprot);
Similar to ofstream constructors.

voi d open (const char*, int, int = filebuf::openprot);
Opens a file for an ofstream, ifstream, or fstream.

void close (void);
Closes the associated filebuf and file.

void attach(int);
Connects to an open file descriptor.

voi d setbuf(char*, int);
Assigns a user-specified buffer to the filebuf.

filebuf* rdbuf (void);
Returns the associated filebuf.

www. pragsoft.com Chapter 11: The IO Library 211

Array 10 with strstreams

The dlasses defined in st r st r eam h support 10 operations with respect to arrays
of characters. Insertion and extraction on such streams causes the data to be
moved into and out of its character array. Because these classes are derived from
lostream classes, thisfile dso includesi ost r eam h.

The three highest-leve array 10 classes (odtratream, istrstream, strstream) are
very smilar to the file 10 counterparts (ofstream, ifstream, fstream). As before,
they are derived from iostream classes and therefore inherit their member functions.

An ostrstream object is used for output. It can be creasted with ether a
dynamically-allocated interna buffer, or a user-specified buffer:

ost r st ream odyn; /1 dynam c buffer
char buffer[1024];
ostrstreamssta(buffer, 1024); // user-specified buffer

The datic verson st a) is more gppropriate for dtuations where the user is
certain of an upper bound on the stream buffer Sze. In the dynamic verson, the
object isresponsible for resizing the buffer as needed.

After dl the insartions into an odirsiream have been completed, the user can
obtain a pointer to the stream buffer by cdling str:

char *buf = odyn.str();

This freezes odyn (disabling dl future insartions). If st r is not caled before odyn
goes out of scope, the class destructor will destroy the buffer. However, when st r
is caled, this responghility rests with the user. Therefore, the user should make
surethat when buf isno longer needed it is deleted:

del et e buf;

An igtrstream object is used for input. Its definition requires a character array
to be provided as a source of inpuit:

char data[128];
/...
istrstreamistr(data, 128);

Alternatively, the user may choose not to specify the size of the character array:

istrstreamistr(data);

The advantage of the former is that extraction operations will not attempt to go
beyond the end of dat a array.

Table 11.24 summarizes the member functions of ostrstream, istrstream, and
drstream (in addition to those inherited from their base classes).

212

C++ Essentials Copyright © 2005 PragSoft

Table 11.24 Member functions of ostrstream, istrstream, and strstream.

ostrstream (void);
ostrstream (char *buf, int size, int nbde = ios::out);
The first version creates an ostrstream with a dynamically-allocated
buffer. The second version creates an ostrstream with a user-specified
buffer of a given size.
i strstream (const char *);
istrstream (const char *, int n);
The first version creates an istrstream using a given string. The second
version creates an istrstream using the first n bytes of a given string.
strstream (voi d);
strstream (char *buf, int size, int node);
Similar to ostrstream constructors.
char* pcount (void);
Returns the number of bytes currently stored in the buffer of an output
stream.
char* str (void);
Freezes and returns the output stream buffer which, if dynamically
allocated, should eventually be deallocated by the user.
strstreanbuf* rdbuf (void);
Returns a pointer to the associated buffer.

www. pragsoft.com Chapter 11: The IO Library 213

Example:

Program Annotation

Annotation

Suppose we are using a language compiler which generates error message of the
form:

Error 21, invalid expression

where 21 is the number of the line in the program file where the error has occurred.
We would like to write a tool which takes the output of the compiler and usesit to
annotate the lines in the program file which are reported to contain errors, so thd,
for example, ingtead of the above we would have something like:

0021 X =X*y+
Error: invalid expression

Listing 11.43 provides a function which performs the proposed annotation.

6 Annot at e takes two argument: i nPr og denotes the program file name and
i nDat a denotes the name of the file which contains the messages generated
by the compiler.

8-9 I nProg and i nDat a are, respectively, connected to istreams pr og and dat a.
12 Lineisdefinedtobeani strstreamwhich extractsfrom dLi ne.

21 Each time round this loop, a line of text is extracted from dat a into dLi ne,
and then processed.

22-26 We are only interested in lines which start with the word Err or . When a
match is found, we reset the get pointer of dat a back to the beginning of the
stream, ignore characters up to the space character before the line number,
extract the line number into | i neNo, and then ignore the remaining characters
up to the comma following the line number (i.e, where the actud error
message darts).

27-29 Thisloop skips pr og lines until the line denoted by the error message is
reached.

30-33 These insations display the prog line containing the error and its
annotation. Note that as a result of the re-arrangements, the line number is
effectively removed from the error message and displayed next to the program
line.

36-37 Theifgreams are closed before the function returning.

214

C++ Essentials Copyright © 2005 PragSoft

Listing 11.43

1 | #incl ude <fstream h>
2 | #incl ude <strstream h>
3 | #i ncl ude <i omani p. h>
4 | #include <string. h>
5] const int lineS ze = 128;
6 | int Annotate (const char *inProg, const char *inData)
714
8 i fstream prog(inProg, ios::in);
9 i fstream data(inData, io0s::in);
10 char pLi ne[li neS ze] ; /1 for prog |ines
11 char dLi ne[l i neSi ze]; /1 for data |ines
12 istrstream line(dLine, |ineS ze);
13 char *prefix = "BEror";
14 i nt prefixLen = strlen(prefix);
15 i nt progLi ne = 0;
16 i nt I'i neNo;
17 if (!prog || !'data) {
18 cerr << "Can't open input files\n";
19 return -1;
20 }
21 while (data.getline(dLine, lineSze, '\n')) {
22 if (strncnp(dLine, prefix, prefixLen) == 0) {
23 l'i ne. seekg(0);
24 line.ignore(lineS ze, ' ");
25 line >> |ineNo;
26 line.ignore(lineS ze, ',");
27 while (progLine < lineNo &
28 prog. getline(pLine, lineS ze))
29 ++progLi ne;
30 cout << setw(4) << setfill('0") << progLine
31 << " " << pLine << endl;
32 cout << " " << prefix << """
33 << dLine + line.tellg() << endl;
34 }
35 }
36 prog. cl ose();
37 dat a. cl ose();
38 return O;
39 [}

Thefdlowing nai n function provides asmple tes for Annot at e:

int nain (void)

{
}

return Annotate("prog.dat", "data.dat");

The contents of these two files are asfollows:

www. pragsoft.com Chapter 11: The IO Library 215

prog. dat :
#def one si ze 100

nai n (voi d)

{
integer n = Q;
while (n < 10]

++n;

return O;

}

dat a. dat :

Error 1, Wnknown directive: defone
Note 3, Return type of main assuned int
Error 5, unknown type: integer

Error 7,) expected

When run, the program will produce the following output:

0001 #defone size 100

Error: Unknown directive: defone
0005 integer n = Q;

Error: unknown type: integer
0007 while (n < 10]

Error:) expected

216 C++ Essentials Copyright © 2005 PragSoft

Exercises

11.56 Use the isream member functions to define an overloaded verson of the >>
operator for the Set class (see Chapter 7) so that it can input sets expressed in the
conventional mathemetica notation (e.g., {2, 5, 1}).

11.57 Write a program which copiesits sandard input, line by line, to its standard output.

11.58 Write a program which copies a user-specified file to another user-specified file,
Y our program should be able to copy text aswell asbinary files,

11.59 Write a program which reads a C++ source file and checks that dl instances of
brackets are baanced, thet is, each ‘(" has a matching ‘)’, and smilarly for [] and
{}, except for when they gppear inade comments or strings. A line which contains
an unba anced bracket should be reported by a message such as the following sent
to standard outpuit:

"{" online 15 has no matching '}’

www. pragsoft.com Chapter 11: The IO Library 217

12.

Figure 12.25

The Preprocessor

Prior to compiling a program source file, the C++ compiler passes the file through a
preprocessor. The role of the preprocessor is to transform the source file into an
equivaent file by performing the preprocessng ingtructions contained by it. These
indructions fecilitate a number of features, such as file incluson, conditiond

compilation, and macro subdtitution.

Figure 12.25 illudtrates the effect of the preprocessor on asmplefile. It shows

the preprocessor performing the following:

Removing program comments by subgtituting a single white space for each

comment.

Performing thefileincdluson (#i ncl ude) and conditiona compilation (#i f def ,

etc.) commands as it encounters them.

‘Learning’ the macros introduced by #def i ne. It compares these names
agang the identifiers in the program, and does a subgtitution when it finds a

match.

The preprocessor performs very minimal error checking of the preprocessing
ingructions. Because it operates at atext leve, it is unable to check for any sort of
language-leve syntax errors. This function is performed by the compiler.

The role of the preprocessor.

prog. h|i nt num = -13;

Prog. CpP|#incl ude "prog. h"
#define two 2

int main (void)

{
}

int n =tw * Abs(num;

#define Abs(x) ((x) >0 ? (x) -(x))
/1 this is a comrent

A 4

Preprocessor

int num= -13;
int main (void)

{
}

int n=2%* ((num > 0 ? (num

A

-(num);

218

C++ Essentials

Copyright © 2005 PragSoft

Preprocessor Directives

Programmer ingructions to the preprocessor (caled directives) take the genera
form:

directive tokens

The# symbol should be the first non-blank character on the line (i.e,, only spaces
and tabs may appear beforeit). Blank symbols may aso appear between the # and
directive Thefollowing are therefore dl vaid and have exactly the same effect:

#def i ne size 100
#defi ne size 100
define size 100

A directive usudly occupies a sngle line A line whose last non-blank
character is \, is assumed to continue on the line following it, thus making it
possble to define multiple line directives. For example, the following multiple line
and sngle line directives have exactly the same effect:

#defi ne CheckError \
if (error) \
exit(1)

#define CheckError if (error) exit(l)

A directive line may aso contain comment; these are Imply ignored by the
preprocessor. A # gopearing on aline on its own is Smply ignored.

Table 12.25 summarizes the preprocessor directives, which are explained in
detall in subsequent sections. Most directives are followed by one or more tokens.
A token is anything other than a blank.

Table 12.25 Preprocessor directives.

Directive Explanation

#def i ne Defines a macro

#undef Undefines a macro

#i ncl ude [Textually includes the contents of a file

#i f def Makes compilation of code conditional on a macro being defined

#i f ndef Makes compilation of code conditional on a macro not being defined
#endi f Marks the end of a conditional compilation block

#if Makes compilation of code conditional on an expression being nonzero
#el se Specifies an else part for a#i f def ,#i f ndef , or #i f directive
#el i f Combination of #el se and #i f

#1 i ne Change current line number and file name

#error Outputs an error message

#pragma Is implementation-specific

www. pragsoft.com Chapter 12: The Preprocessor 219

Macro Definition

Macros are defined using the #def i ne directive, which takes two forms: plain and
parameterized. A plain macro hasthe generd form:

#defi ne identifier tokens

It instructs the preprocessor to substitute tokens for every occurrence of identifier
in the rest of the file (except for ingde drings). The subgtitution tokens can be
anything, even empty (which has the effect of removing identifier from the rest of
thefile).

Plain macros are used for defining symbolic congtants. For example:

#def i ne size 512

#defi ne word | ong
#defi ne bytes si zeof (wor d)

Because macro subgtitution is dso gpplied to directive lines, an identifier defined by
one macro can be used in a subsequent macro (e.g., use of wor d in byt es above).
Given the above definitions, the code fragment

word n = size * bytes;
IS macro-expanded to:
long n = 512 * sizeof (I ong);

Use of macros for defining symbolic condants has its origins in C, which had
no language facility for defining congants. In C++, macros are less often used for
this purpose, because consts can be used ingtead, with the added benefit of
proper type checking.

A parameterized macro hasthe generd form

#def i ne identifier(parameters) tokens

where parameters is a list of one or more commarseparated identifiers. There
should be no blanks between the identifier and (. Otherwise, the whole thing is
interpreted as a plain macro whose substitution tokens part starts from (. For
example,

#define Max(x,y) ((x) >(y) 2 (x) = (¥)

defines a parameterized macro for working out the maximum of two quantities.
A parameterized macro is matched againg a cal to it, which is syntacticaly
very amilar to afunction cdl. A cdl must provide a matching number of arguments.

220 C++ Essentials Copyright © 2005 PragSoft

As before, the tokens part of the macro is subgtituted for the cdl. Additiondly,
every occurrence of a parameter in the subdtituted tokens is subgtituted by the
corresponding argument. Thisis caled macr o expansion. For example, the call

n=~nMx (n- 2 k +6);
IS macro-expanded to:
n=(n-2 >(k+6) ?2(n-2 : (k+6);

Note that the (in a macro cal may be separated from the macro identifier by
blanks.

It is generally a good idea to place additional brackets around each
occurrence of a parameter in the subgtitution tokens (as we have done for Max).
This protects the macro against undesirable operator precedence effects after
macro expangon.

Overlooking the fundamental difference between macros and functions can
lead to subtle programming errors. Because macros work a a textua leve, the
semantics of macro expanson is not necessarily equivaent to function cdl. For
example, the macro call

Nax(++,)
is expanded to
((++) > (j) ? (++) = ()))

which meansthat i may end up being incremented twice. Where as a function
verson of Max would ensurethat i isonly incremented once.

Two facilities of C++ make the use of parameterized macros less atractive
than in C. Fird, C++ inline functions provide the same leve of code efficiency as
macros, without the semantics pitfalls of the latter. Second, C++ templates provide
the same kind of flexibility as macros for defining generic functions and classes, with
the added benefit of proper syntax analysis and type checking.

Macros can aso be redefined. However, before a macro is redefined, it
should be undefined using the #undef directive. For example:

#undef size
#defi ne size 128
#undef Max

Useof #undef on an undefined identifier is harmless and has no effect.

www. pragsoft.com Chapter 12: The Preprocessor 221

Quote and Concatenation Operators

The preprocessor provides two specid operators or manipulating macro
parameters. The quote operator (#) is unary and takes a macro parameter
operand. It trandforms its operand into a string by putting double-quotes around it.

For example, consder a parameterized macro which checks for a pointer to
be nonzero and outputs a warning message when it is zero:

#defi ne CheckPtr(ptr) \
if ((ptr) == 0) cout << #ptr << " is zero!'\n"

Use of the # operator alows the expression given as argument to CheckPtr to be
literally printed as a part of the warning message. Therefore, the call

CheckPtr(tree->left);
is expanded as:

if ((tree->left) == 0) cout << "tree->left" << " is zero!\n";
Note that defining the macro as

#defi ne CheckPtr(ptr) \
if ((ptr) == 0) cout << "ptr is zero!'\n"

would not produce the desired effect, because macro subgtitution is not performed
indde drings.

The concatenation operator (##) is binary and is used for concatenating two
tokens. For example, given the definition

#define internal (var) i nt er nal ##var
the call

| ong internal (str);
expands to:

| ong internal str;

This operator is rardy used for ordinary programs. It is very useful for writing
trandators and code generators, as it makes it easy to build an identifier out of

fragments.
O

222 C++ Essentials Copyright © 2005 PragSoft

File Inclusion

A file can be textudly included in another file using the #i ncl ude directive. For
example, placing

#i ncl ude "constants. h"

ingde afilef causes the contents of cont ent s. h to beincluded in f in exactly the
position where the directive gppears. The included file is usudly expected to resde
in the same directory as the program file. Otherwise, a full or reative path to it
should be specified. For example:

#include "../file.h" /1 include fromparent dir (UNX
#include "/usr/local/file.h" [full path (UN X
#include ". . \file.h" /1 include fromparent dir (DOB)
#incl ude "\usr\local\file.h" /1 full path (DOB)

When including system header files for sandard libraries, the file name should
be enclosed in <> instead of double-quotes. For example:

#i ncl ude <i ostream h>

When the preprocessor encounters this, it looks for the file in one or more
prespecified locations on the system (e.g., the directory / usr /i ncl ude/ cpp on a
UNIX system). On most systems the exact locations to be searched can be
specified by the user, ether as an argument to the compilation command or as a
system environment variable.

File inclusons can be nested. For example, if a file f includes another file g
which in turn includes another file h, then effectively f dso includes h.

Although the preprocessor does not care about the ending of an included file
(i.e, whether itis. h or . cpp or . cc, &c.), it is cusomary to only include header
filesin other files.

Multiple inclusion of files may or may not lead to compilation problems. For
example, if a header file contains only macros and declaraions then the compiler
will not object to their regppearance. But if it contains a variable definition, for
example, the compiler will flag it as an error. The next section describes a way of
avoiding multiple indlusons of the samefile.

www. pragsoft.com Chapter 12: The Preprocessor 223

Conditional Compilation

Table 12.26

The conditiona compilation directives dlow sections of code to be sdectively
included for or excluded from compilation, depending on programmer-specified
conditions being satidfied. It is usudly used as a portability tool for taloring the
program code to specific hardware and software architectures. Table 12.26
summarizes the generd forms of these directives (code denotes zero or more lines
of program text, and expression denotes a constant expression).

General forms of conditional compilation directives.

Form Explanation

#i f def identifier If identifier is a #def i ned symbol then code is included
code in the compilation process. Otherwise, it is excluded.

#endi f

#i f ndef identifier If identifier is not a #defi ned symbol then code is
code included in the compilation process. Otherwise, it is

#endi f excluded.

#i f expression If expression evaluates to nonzero then code is included
code in the compilation process. Otherwise, it is excluded.

#endi f

#i f def identifier If identifier is a #defined symbol then codel is included in
codel the compilation process and code2 is excluded.

#el se Otherwise, code? is included and codel is excluded.
code2 Similarly, #€l se can be used with#i f ndef and#i f .

#endi f

#i f expressionl If expressionl evaluates to nonzero then only codel is
codel included in the compilation process. Otherwise, if

#el i f expression2 expression2 evaluates to nonzero then only code2 is
code2 included. Otherwise, code3 is included.

#el se As before, the #el se part is optional. Also, any number of
code3 #el i f directives may appear after a#i f directive.

#endi f

Here are two smple examples:

// Dfferent application start-ups for beta and final version:

#i f def BETA

D spl ayBet aD al og();
#el se

CheckRegi stration();
#endi f

/!l Ensure Whit is at |east 4 bytes wide:
#if sizeof(int) >= 4

typedef int Lhit;
#elif sizeof (long) >= 4

typedef long UWnit;
#el se

typedef char
#endi f

Lhi t[4];

224

C++ Essentials

Copyright © 2005 PragSoft

One of the common uses of #i f is for temporarily omitting code. This is often
done during testing and debugging when the programmer is experimenting with
suspected areas of code. Although code may aso be omitted by commenting its
out (i.e, placing /* and */ around it), this approach does not work if the code
dready contains /*...*/ syle comments, because such comments cannot be
nested.

Codeis omitted by giving #i f an expresson which dways evauates to zero:

#f 0

...code to be omtted
#endi f

The preprocessor provides an operator caled def i ned for use is expresson
argumentsof #i f and #el i f . For example,

#i f defined BETA

has the same effect as:

#i f def BETA

However, use of defined makes it possble to write compound logica
expressions. For example:

#if defined ALPHA || defined BETA

Conditional compilation directives can be used to avoid the multiple of
indusion of files. For example, given an include file cdled fi | e. h, we can avoid
multipleindusonsof fi | e. h in any other file by adding thefalowingtofi | e. h:

#ifndef _file h_
#define file h_

contents of file.h goes here
#endi f

When the preprocessor reads the first incluson of file. h,thesymbol _file h_
Is undefined, hence the contents is included, causng the symbol to be defined.
Subsequent inclusions have no effect because the #i f ndef directive causes the

contents to be excluded.
O

www. pragsoft.com Chapter 12: The Preprocessor 225

Other Directives

The preprocessor provides three other, less-frequently-used directives. The #l i ne
directive is usad to change the current line number and file name. It has the generd
form:

i ne number file

wherefileisoptiond. For example,

#ine 20 "file.h"

makes the compiler bdieve that the current line number is 20 and the current file
nameis fil e. h. The change remains effective until another #l i ne directive is
encountered. The directive is useful for trandators which generate C++ code. It
dlows the line numbers and file name to be made conggtent with the origind input
file, ingtead of any intermediate C++ file.

The #error directive is used for reporting errors by the preprocessor. It has
the generd form

#error error

where error may be any sequence of tokens. When the preprocessor encounters
this, it outputs error and causes compilation to be aborted. It should therefore be
only used for reporting errors which make further compilation pointless or
impossible. For example:

#i fndef UN X
#error This software requires the UN X C5.
#endi f

The #pr agna directive is implementation-dependent. It is used by compiler
vendors to introduce nonstandard preprocessor features, specific to their own
implementation. Examples from the SUN C++ compiler include:

// align name and val starting addresses to nultiples of 8 bytes:
#pragma align 8 (nanme, val)

char narre[9] ;

doubl e val ;

/1l call M/Function at the begi nning of program execution:
#pragma init (M/Function)

226 C++ Essentials Copyright © 2005 PragSoft

Predefined Identifiers

The preprocessor provides a small set of predefined identifiers which denote useful
information. The dandard ones are summarized by Table 12.27. Most
implementations augment thislist with many nonstandard predefined identifiers.

Table 12.27 Standard predefined identifiers.

Identifier Denotes

__FI'LE__ | Name of the file being processed

__LINE__ [Currentline number of the file being processed
__DATE__ | Current date as a string (e.g., "25 Dec 1995")
__TIME__ | Currenttime as a string (e.g., "12:30:55")

The predefined identifiers can be used in programs just like program constants.
For example,

#define Assert(p) \
if ('(p)) cout << FILE << ": assertionon line " \
<< _LINE_ << " failed.\n"

defines an assart macro for testing program invariants. Assuming that the sample
cdl

Assert(ptr !'= 0);

gopear in file prog. cpp on line 50, when the tated condition fails, the following
messege is displayed:

prog. cpp: assertion on line 50 failed.

www. pragsoft.com Chapter 12: The Preprocessor 227

Exercises

12.60 Define plain macros for the following:
Aninfinite loop structure cdled f or ever .
Pascd style begi n and end keywords.
Pascal gtylei f -t hen- el se statements.
Pascal styler epeat - unti | loop.
12.61 Define parameterized macros for the following:
Swapping two values.
Finding the absolute vaue of a number.
Finding the center of a rectangle whose top-left and bottom-right coordinates
are given (requires two macros).
Redefine the above asinline functions or function templates as appropriate.
12.62 Write directives for the following:
Defining Smal | asan unsi gned char when the symbol PCis defined, and as
unsi gned short otherwise.
Induding thefilebasi cs. h in another file when the symbol GPP is not defined.
Indluding the file debug. h in another filewhen r el ease isO, or bet a. h when
rel easeisl, or final . hwhenrel ease isgreater than 1.
12.63 Write a macro named Wien which returns the current date and time as a gtring
(eg., "25 Dec 1995, 12:30:55"). Smilaly, write a macro named Wher e
which returns the current location in afileasadring (eg., "file. h: line 25").
O
228 C++ Essentials Copyright © 2005 PragSoft

Solutions to Exercises

11 #i ncl ude <i ostream h>
int main (void)
{
doubl e fahrenheit;
doubl e cel si us;
cout << "Tenperature in Fahrenhait: ";
cin >> fahrenheit;
celsius =5 * (fahrenheit - 32) / 9;
cout << fahrenheit << " degrees Fahrenheit ="
<< celsius << " degrees Cel sius\n";
return O;
}
1.2 int n=-100; // valid
unsigned int i = -100; /1 valid
signed int = 2.9; /1 invalid: no variable nane
long m= 2, p = 4 /1 valid
int 2k; /1 invalid: 2k not an identifier
double x =2 * m /1 valid
float y =y * 2 /1 valid (but dangerous!)
unsi gned double z = 0.0; /1 invalid: can't be unsigned
doubl e d = 0. 67F; /1 valid
float f = 0.52L; /1 valid
signed char = -1786; [l invalid: no variabl e nane
char c ='$ + 2; /1 valid
sign char h = "\111"; /] invalid: 'sign'" not recognized
char *nane = "Peter Pan"; /1 valid
unsi gned char *num = "276811"; /1 valid
1.3 identifier /] valid
seven 11 // valid
uni que // valid
gr oss-i ncorre /] invalid: - not allowed inid
gr oss$i ncone /] invalid: $ not allowed inid
2by2 /1 invalid: can't start with digit
def aul t /1 invalid: default is a keyword
average weight_of _a | arge pizza /1l valid
vari abl e /1 valid
obj ect. oriented /] invalid: not allowed inid
230 C++ Essentials Copyright © 2005 PragSoft

1.4 i nt age; /1 age of a person

doubl e enpl oyeel ncore; /1 enpl oyee i ncone
| ong wor dsl nDi ct n; /'l nunber of words in dictionary
char letter; /1 letter of al phabet
char *greeting; /1 greeting nessage
2.1 /1 test if nis even:
nwe ==

/]l test if cisadigit:
c>='0 & c<='9
/]l test if cis aletter:

c>'a & c<="'z || c>"A &c<="'"Z
/1 test if nis odd and positive or n is even and negati ve:
N2 '!'=08&&N>0]|| N2 ==0&& n <0

/1 set the n-th bit of along integer f to 1
f |= (1L << n)
/1 reset the n-th bit of along integer f to O:
f & ~(1L << n)
/1 give the absol ute val ue of a nunber n:
(n>=07?n: -n)
/1 give the nunber of characters in a null-termnated string literal s:
sizeof(s) - 1

2.2 (((n<=(p+0q) & (n>=(p-0q)) [| (n==0)
(((++n) * (g--)) / ((+*+p) - Q)
(n] ((p&Qg " (p<<(2+0))))
((p<a ?((n<p ?2((g*n) -2 :(((q/ n+1): (q-n)

2.3 double d =2 * int(3.14); // initializes d to 6
| ong k =3.14 - 3; /1l initializes kto O
char c='a + 2 // initializes c to'c
char c='p +'A -'a; /]l initializes c to'P

2.4 #i ncl ude <i ostream h>

int nmain (void)

{
long n;
cout << "Wat is the value of n? ";
cin >>n;
cout << "2 tothe power of " << n<<" =" << (1L << n) << '\n';
return O;

}

2.5 #i ncl ude <i ostream h>

int main (void)

{
doubl e n1, n2, n3;

www. pragsoft.com Solutions to Exercises 231

cout << "lnput three nunbers: ";
cin >>nl >>n2 >> n3;

cout << (nl <=n2 & n2 <= n3 ? "Sorted" : "Not sorted') << '\n';
return O;
}
3.1 #i ncl ude <i ostream h>

int nain (void)

{
doubl e hei ght, wei ght;

cout << "Person's height (in centineters): ";
cin >> hei ght;

cout << "Person's weight (in kilograns: ";
cin >> wei ght;

if (weight < height/2.5)
cout << "Underwei ght\n";

else if (height/2.5 <= wei ght &% wei ght <= hei ght/2. 3)
cout << "Normal\n";

el se
cout << "Qverweight\n";

return O;

}

3.2 It will output the message N i S negati ve.
This is because the dse dause is asociaed with the if clause immediately
preceding it. The indentation in the code fragment

if (n>=0)
if (n < 10)
cout << "nis small\n";
el se
cout << "n is negative\n";

is therefore mideading, because it is understood by the compiler as.

if (n>=0)
if (n <10
cout << "nis snmall\n";
el se
cout << "n is negative\n";

The problem isfixed by placing the second if within a compound statement:

if (n>=0) {
if (n< 10
cout << "nis small\n";
} else

cout << "n is negative\n";

232 C++ Essentials Copyright © 2005 PragSoft

3.3 #i ncl ude <i ostream h>

int main (void)

{

int day, nonth, year;

char ch;

cout << "lInput a date as dd/miyy: ";

cin >> day >> ch >> nonth >> ch >> year;

switch (nonth) {
case 1 cout << "January"; break;
case 2 cout << "February"; break;
case 3 cout << "March"; br eak;
case 4: cout << "April"; br eak;
case b: cout << "May"; br eak;
case 6: cout << "June"; br eak;
case 7: cout << "July"; br eak;
case 8: cout << "August"; br eak;
case 9: cout << "Septenber"; break;
case 10: cout << "QCctober”; break;
case 11: cout << "Novenber"; break;
case 12: cout << "Decenber"; break;

}

cout << ' ' << day << ", " << 1900 + year << '\n';

return O;

}
3.4 #i ncl ude <i ostream h>

int nain (void)
{
int n;
int factorial = 1,
cout << "lnput a positive integer: ";
cin > n;

if (n>=0) {
for (register int i =1; i <=n; +H)
factorial *=1i;
cout << "Factorial of " << n<<" =" << factorial << '\n';

}
return O;
3.5 #i ncl ude <i ostream h>

int main (void)

{

www. pragsoft.com Solutions to Exercises

233

int octal, digit;

int decimal = 0;

int power = 1,

cout << "lInput an octal nunber: ";
cin >> octal;

for (int n=octal; n>0;, n/=10) { /1 process each digit

digit = n %10; /1 right-nost digit
decimal = decimal + power * digit;
power *= 8;
}
cout << "Cctal (" << octal << ") = Decinmal (" << decimal << ")\n";
return O;
}
3.6 #i ncl ude <i ostream h>
int main (void)
{
for (register i =1; i <=9; ++)
for (register j =1; j <= 9; +4)
cout << j <<" x" <«<j <" =" &< i¥ <«<"\n';
return O;
}
4.1a #i ncl ude <i ostream h>
doubl e FahrenToCel si us (doubl e fahren)
{
return 5 * (fahren - 32) / 9;
}
int main (void)
{
doubl e fahrenheit;
cout << "Tenperature in Fahrenhait: ";
cin >> fahrenheit;
cout << fahrenheit << " degrees Fahrenheit ="
<< FahrenToCel si us(fahrenheit) << " degrees Cel sius\n";
return O;
}
4.1b #i ncl ude <i ostream h>
char* CheckVéi ght (doubl e hei ght, doubl e wei ght)
{
if (weight < height/2.5)
234 C++ Essentials Copyright © 2005 PragSoft

4.2

4.3

4.4

4.5

return "Underwei ght";

if (height/2.5 <= weight & wei ght <= height/2.3)
return "Normal ";

return "Qverwei ght";

}

int main (void)

{
doubl e hei ght, wei ght;
cout << "Person's height (in centineters): ";
cin >> hei ght;
cout << "Person's weight (in kilograns: ";
cin >> wei ght;
cout << CheckVei ght (hei ght, weight) << '\n';
return O;

}

The value of X and y will be unchanged because Swnap uses value parameters.

Consequently, it swaps a copy of X and y and not the originals.

The program will output:
Par anet er
Local

Ad obal
Par anet er

enum Bool {fal se, true};

void Primes (unsigned int n)

{
Bool isPrineg;
for (register num= 2; num<= n; ++num {
isPrine = true;
for (register i =2, i <num2, ++i)
if (nun% == 0) {
isPrine = fal se;
br eak;
}
if (isPrine)
cout << num<< '\n';
}
}
enum Mont h {

Jan, Feb, Mar, Apr, My, Jun,
Jul, Aug, Sep, Cct, Nov, Dec

www. pragsoft.com

Solutions to Exercises

235

b

char* MonthStr (Mnth nonth)

{
switch (nonth) {
case Jan: return "January";
case Feb: return "february"”;
case Mar: return "March";
case Apr: return "April";
case My: return "May";
case Jun: return "June";
case Jul: return "July";
case Aug: return "August"”;
case Sep: return " Septenber”;
case Cct: return "Qct ober”;
case Nov: return "Novenber";
case Dec: return "Decenber";
defaul t: return "";
}
}
4.6 inline int I1sA pha (char ch)
{
returnch >="'a" & ch<='2" || ch>"'A & ch <="'Z;
}
4.7 int Power (int base, unsigned int exponent)
{
return (exponent <= 0)
?1
base * Power (base, exponent - 1);
}
4.8 double Sum (int n, double val ...)
{
va_ list args; /] argunent |ist
double sum= 0;
va_start(args, val); /] initialize args
while (n-- > 0) {
sum += val ;
val = va_ arg(args, double);
}
va_end(args); /1 clean up args
return sum
}
5.1 voi d ReadArray (doubl e nuns[], const int size)

236 C++ Essentials Copyright © 2005 PragSoft

5.2

5.3

5.4

for (register i =0; i <size;, ++H) {
cout << "nuns[" << i << "] =";
cin >> nuns[i];

}

void WiteArray (double nuns[], const int size)

{

for (register i =0; i < size;, ++)
cout << nums[i] << '\n';
}
voi d Reverse (doubl e nuns[], const int size)
{
doubl e tenp;
for (register i =0; i <sizel2; ++H) {
tenp = nuns[i];
nuns[i] = nuns[size - i - 1];
nuns[size - i - 1] = tenp;
}
}
doubl e contents[][4] = {
{ 12, 25, 16, 0.4},
{ 22, 4, 8, 0.3},
{28 5 9 05},
{32 7, 2 02}

|

void WiteContents (const doubl e *contents,
const int rows, const int cols)

{
for (register i =0; i <rows; ++H) {
for (register j =0; j <cols; +4)
cout << *(contents +i * rows +j) <<' ';
cout << '\n';
}
}

enum Bool {fal se, true};

voi d ReadNarres (char *nanes[], const int size)

{

char nane[128] ;

for (register i =0; i <size; ++H) {
cout << "names[" << i << "] =",
cin >> nane;
names[i] = new char[strlen(nane) + 1];

www. pragsoft.com Solutions to Exercises

237

strcpy(nanes[i], nane);

}
}
voi d WiteNames (char *names[], const int size)
{
for (register i =0; i < size;, ++)
cout << names[i] << '\n';
}
voi d Bubbl eSort (char *names[], const int size)
{
Bool swapped;
char *tenp;
do {
swapped = fal se;
for (register i =0; i <size - 1; ++) {
if (strcenp(names[i], names[i+1]) >0) {
tenp = nanes[i];
names[i] = names[i +1];
names[i +1] = tenp;
swapped = true;
}
}
} while (swapped);
}
55 char* ReverseString (char *str)
{
int len = strlen(str);
char *result = new char[len + 1];
char *res = result + |len;
*res-- ='\0';
while (*str)
*res-- = *str++
return result;
}
5.6 typedef int (*Conpare)(const char*, const char*);

voi d Bubbl eSort (char *nanes[], const int size, Conpare conp)

{
Bool swapped;
char *tenp;
do {
swapped = fal se;
for (register i =0; i <size - 1; ++) {

if (conp(nanes[i], nanes[i+1l]) >0) {
tenp = nanes|[i];

238 C++ Essentials Copyright © 2005 PragSoft

5.7

6.1

6.2

names[i] = names[i +1];
names[i +1] = tenp;
swapped = true;

}
}
} while (swapped);
}
typedef voi d (*SaapFun) (doubl e, doubl e);
SnapFun Swap;
typedef char *Tabl e[];
Tabl e tabl e;
typedef char *&Narre;
Nane nane;

t ypedef unsigned | ong *Val ues[10][20] ;
Val ues val ues;

Declaring Set parameters as references avoids their being copied in a call. Call-by-
reference is generally more efficient than call-by-value when the objects involved are
larger than the built-in type objects.

class Conpl ex {
publ i c:
Conpl ex (double r = 0, double i = 0)
{real =r; inag = i;}
Conpl ex Add (Conpl ex &c);
Conpl ex Subtract (Conpl ex &) ;
Conpl ex Mul ti pl y(Conpl ex &);

voi d Print (void);
private:
doubl e real; /1 real part
doubl e i nag; /! inmaginary part
1
Cormpl ex Conpl ex: : Add (Conpl ex &c)
{
return Conpl ex(real + c.real, inag + c.inag);
}
Cormpl ex Conpl ex: : Subtract (Conpl ex &c)
{
return Conpl ex(real - c.real, inag - c.inag);
}
Cormpl ex Conpl ex:: Mil tiply (Conpl ex &c)
{
return Conpl ex(real * c.real - imag * c.inag,
imag * c.real + real * c.inmag);
}
voi d Conpl ex:: Print (void)
{

www. pragsoft.com Solutions to Exercises 239

cout <<real <<" +i" <«<imag << '\n'

}

6.3 #i ncl ude <i ostream h>
#i ncl ude <string. h>

const int end = -1; /1 denotes the end of the |ist

class Menu {

publ i c:
Menu (voi d) {first = 0;}
~Menu (void);
voi d Insert (const char *str, const int pos = end);
voi d Celete (const int pos = end);
i nt Choose (void);
private:

class ption {

publ i c:
otion (const char*);
~ption (void) {delete nare;}
const char* Nane (void) {return nare;}
ot i on*& Next (void) {return next;}
private:
char *nane; // option name
ption *next; // next option
b
otion *first; /1l first option in the nenu
b
Menu: : Qption:: Qption (const char* str)
{
name = new char [strlen(str) + 1];
strcpy(nane, str);
next = 0;
}
Menu: : ~Menu (voi d)
{
Menu: : Qotion *handy, *next;
for (handy = first; handy != 0; handy = next) ({
next = handy- >Next () ;
del et e handy;
}
}

voi d Menu::lnsert (const char *str, const int pos)

{
Menu: : Qption *option = new Menu: : ption(str);

240 C++ Essentials Copyright © 2005 PragSoft

Menu: : Qotion *handy, *prev = 0;
int idx = 0;

/] set prev to point to before the insertion position

for (handy = first; handy != 0 & i dx++ ! = pos; handy = handy-

>Next ())
prev = handy;

if (prev == 0) { [l empty list
option->Next() = first; [/ first entry
first = option;
} else { /] insert
option->Next () = handy;
prev->Next () = option;

}
}
voi d Menu: : Del ete (const int pos)
{
Menu: : Qotion *handy, *prev = 0;
int idx = 0;
/] set prev to point to before the del etion position
for (handy = first;
handy !'= 0 & handy->Next() !'= 0 & i dx++ ! = pos;
handy = handy->Next ())
prev = handy;
if (handy '= 0) {
if (prev == 0) /1l it's the first entry
first = handy->Next();
el se /1 it's not the first
prev->Next () = handy->Next ();
del et e handy;
}
}
i nt Menu: : Choose (voi d)
{
int n, choice;
Menu: : Qotion *handy = first;
do {
n = 0;
for (handy = first; handy != 0; handy = handy->Next())
cout << ++n << ", " << handy->Nane() << '\n'
cout << "Qption? ",
cin >> choi ce
} while (choice <= 0 || choice > n);
return choi ce;
}

www. pragsoft.com Solutions to Exercises

241

6.4 #i ncl ude <i ostream h>
const int nmaxCard = 10;
enum Bool {false, true};
class Set {
publ i c:
Set (voi d) { first =0; }
~Set (voi d);
i nt Card (void);
Bool Menber (const int) const;
voi d AddEl em (const int);
voi d RvHE em (const int);
voi d Copy (Set&);
Bool Equal (Setd);
voi d I nt er sect (Set& Set&);
voi d Uni on (Set& Set&);
voi d Print (void);
private:
class Hement {
publ i c:
Henment (const int val) {value = val; next = 0;}
i nt Value (void) {return val ue;}
BHenent*& Next (voi d) {return next;}
private:
i nt value; // elenent val ue
B erent *next; [// next elenent
s
B enent *first; /1 first elenent in the |ist
h
Set::~Set (void)
{
Set:: Henent *handy, *next;
for (handy = first; handy != 0; handy = next) ({
next = handy- >Next ();
del et e handy;
}
}
int Set::Card (void)
{
Set:: H enent *handy;
int card = 0;
for (handy = first; handy != 0; handy = handy->Next())
242 C++ Essentials Copyright © 2005 PragSoft

++car d;
return card;

}
Bool Set::Menber (const int elen) const
{
Set:: H enent *handy;
for (handy = first; handy != 0; handy = handy->Next ())
i f (handy->Val ue() == el en)
return true;
return fal se;
}
voi d Set::AddEH em (const int el en
{
if (!Menber(elem) {
Set::Henent *option = new Set::Henent(elen;
option->Next() = first; /1 prepend
first = option;
}
}
void Set::RwH em(const int elen
{
Set::Henent *handy, *prev = 0;
int idx = 0;
/] set prev to point to before the del etion position:
for (handy = first;
handy !'= 0 && handy->Next() !'= 0 & handy->Val ue() !'= elem
handy = handy->Next ())
prev = handy;
if (handy '= 0) {
if (prev == 0) /1l it's the first entry
first = handy->Next();
el se /1 it's not the first
prev->Next () = handy->Next ();
del et e handy;
}
}
void Set::Copy (Set &set)
{
Set:: H enent *handy;
for (handy = first; handy != 0; handy = handy->Next())
set . AddH enf handy- >Val ue());
}

Bool Set::Equal (Set &set)

www. pragsoft.com Solutions to Exercises 243

Set:: H enent *handy;

if (Card() !=set.Card())
return fal se;
for (handy = first; handy != 0; handy = handy->Next ())
if (!set.Menber(handy->Val ue()))
return fal se;
return true;

}
void Set::Intersect (Set &et, Set &res)
{
Set:: H enent *handy;
for (handy = first; handy != 0; handy = handy->Next())
i f (set.Menber(handy->Val ue()))
res. AddH en{ handy->Val ue());
}
void Set::Union (Set &set, Set &res)
{
Copy(res);
set. Copy(res);
}
void Set::Print (void)
{
Set:: H enent *handy;
cout << '{';
for (handy = first; handy != 0; handy = handy->Next()) {
cout << handy->Val ue();
i f (handy->Next() '= 0)
cout << ' ,';
}
cout << "}\n";
}
6.5 #i ncl ude <i ostream h>

#i ncl ude <string. h>

enum Bool {fal se, true};
typedef char *String;

cl ass Bi nNode;
cl ass BinTree;

cl ass Sequence {
publ i c:
Sequence (const int size);
~Sequence (voi d) {del ete entries;}

244 C++ Essentials Copyright © 2005 PragSoft

voi d I nsert (const char*);

voi d Cel ete (const char*);

Bool F nd (const char*);

voi d Print (void);

i nt S ze (void) {return used;}

friend BinNode* BinTree:: MakeTree (Sequence &seq, int low int high);

pr ot ect ed:
char **entries; /] sorted array of string entries
const int slots; /1 nunber of sequence slots
i nt used; /1 nunmber of slots used so far
h
voi d
Sequence: : I nsert (const char *str)
{
if (used >= slots)
return;
for (register i =0; i < used;, ++) {
if (strenp(str,entries[i]) < 0)
br eak;
}
for (register j =used; j >i; --j)

entries[j] = entries[j-1];
entries[i] = newchar[strlen(str) + 1];
strcpy(entries[i], str);

++used;
}
voi d
Sequence: : Del ete (const char *str)
{
for (register i =0; i < used;, ++) {
if (strenp(str,entries[i]) == 0) {
delete entries[i];
for (register j =i; j < used-1;, ++)
entries[j] = entries[j+1];
- - used;
br eak;
}
}
}
Boo
Sequence: : Find (const char *str)
{
for (register i =0; i < used; ++i)
if (strcenp(str,entries[i]) == 0)
return true;
return fal se;
}

www. pragsoft.com Solutions to Exercises 245

voi d
Sequence: : Print (voi d)

{
cout << '[';
for (register i =0; i < used;, ++) {
cout << entries[i];
if (i < used-1)
cout << ',';
}
cout << "]\n";
}
6.6 #i ncl ude <i ostream h>

#i ncl ude <string. h>
enum Bool {fal se,true};

cl ass Bi nNode {

publ i c:
B nNode (const char*);
~Bi nNode (void) {delete value;}
char*& Val ue (void) {return value;}
B nNode*& Left (void) {return left;}
B nNode*& R ght (void) {returnright;}
voi d FreeSubtree (B nNode *subtree);
voi d I nsert Node (B nNode *node, Bi nNode *&subtree);
voi d el eteNode (const char*, B nNode *&subtree);
const BinNode* Fi ndNode (const char*, const BinNode *subtree);
voi d PrintNode (const Bi nNode *node);
private:
char *val ue; /1 node val ue
B nNode *left; /1l pointer to left child
B nNode *right; /1l pointer toright child
h
class BinTree {
publ i c:
B nTree (voi d) {root = 0;}
Bi nTree (Sequence &seq);
~Bi nTr ee(voi d) {root->FreeSubtree(root);}
voi d Insert (const char *str);
voi d Delete (const char *str) {root->Del eteNode(str, root);}
Bool Find (const char *str) {return root->F ndN\ode(str,
root) '=0;}
void Print (voi d) {root->PrintNode(root); cout << '\n';}
pr ot ect ed:
Bi nNode* r oot ; /1 root node of the tree
h

246 C++ Essentials Copyright © 2005 PragSoft

Bi nNode: : B nNode (const char *str)

{
val ue = new char[strlen(str) + 1];
strcpy(val ue, str);
left =right = 0;

}

voi d
B nNode: : FreeSubt ree (Bi nNode *node)
{
if (node '=0) {
FreeSubt ree(node- >l ef t);
FreeSubt ree(node->ri ght);
del et e node;

}

voi d
B nNode: : | nsert Node (Bi nNode *node, Bi nNode *&subt ree)
{
if (subtree == 0)
subtree = node;
el se if (strcnp(node->val ue, subtree->value) <= 0)
I nsert Node(node, subtree->left);
el se
I nsert Node(node, subtree->right);

}

voi d
B nNode: : Del et eNode (const char *str, BinNode *&subtree)
{

int cnp;

if (subtree == 0)
return;

if ((cnp = strcnp(str, subtree->value)) < 0)
Del et eNode(str, subtree->left);

elseif (cnp > 0)
Del et eNode(str, subtree->right);

el se {
B nNode* handy = subtree;
if (subtree->left == 0) /1 no left subtree

subtree = subtree->right;

else if (subtree->right == 0) /1 no right subtree
subtree = subtree->left;

el se { /1 left and right subtree
subtree = subtree->right;
/] insert left subtree into right subtree:
I nsert Node(subt ree->| eft, subtree->right);

}
del et e handy;

www. pragsoft.com Solutions to Exercises 247

}

const Bi nNode*
B nNode: : Fi ndN\ode (const char *str, const Bi nNode *subtree)

{
int cnp;
return (subtree == 0)
?0
: ((cnp = strcnp(str, subtree->value)) <0
? FindNode(str, subtree->left)
(cnmp >0
? FindNode(str, subtree->right)
. subtree));
}
voi d
B nNode: : Pri nt Node (const Bi nNode *node)
{
if (node '=0) {
Pri nt Node(node- >l eft);
cout << node->value << ' ';
Pri nt Node(node->ri ght);
}
}
B nTree:: BinTree (Sequence &seq)
{
root = MakeTree(seq, 0, seq.S ze() - 1);
}
voi d
B nTree::Insert (const char *str)
{
r oot - >l nsert Node(new Bi nNode(str), root);
}
6.7 cl ass Sequence {
/...
friend BinNode* BinTree:: MakeTree (Sequence &seq, int low int high);
h
class BinTree {
publ i c:
/...
B nTree (Sequence &seq);
/...

Bi nNode* MakeTree (Sequence &seq, int low int high);
b

B nTree:: BinTree (Sequence &seq)

248 C++ Essentials Copyright © 2005 PragSoft

{
root = MakeTree(seq, 0, seq.S ze() - 1);

}

Bi nNode*

B nTree: : MakeTree (Sequence &seq, int low int high)

{
int md = (low + high) / 2
B nNode* node = new Bi nNode(seq. entries[md]);
node->Left() = (md = low? 0 : MkeTree(seq, low, nid-1));
node->Right() = (md == high ? 0 : MikeTree(seq, md+l, high));
return node;

}

6.8 A static data member is used to keep track of the last allocated ID (see | astld
below).

class Menu {
publ i c:

/...

i nt ID (voi d) {returnid;}
private:

/...

i nt id; /!l menu ID

static int lastld, /1l last allocated ID

=
int Menu::lastld = 0;

6.9 #i ncl ude <i ostream h>
#i ncl ude <string. h>

const int end = -1; /] denotes the end of the |ist
class ption;

class Menu {

publ i c:
Menu (voi d) {first = 0; id = lastld++}
~Menu (void);
void Insert (const char *str, const Menu *subnenu, const int
pos = end);
void Delete (const int pos = end);
i nt Print (void);
i nt Choose (void) const;
i nt ID (voi d) {returnid;}
private:

class Option {
publ i c:
ption (const char*, const Menu* = 0);

www. pragsoft.com Solutions to Exercises 249

~(ption (void);

const char* Nane (voi d)
const Menu* Subnenu (voi d)
oti on*& Next (voi d)

{return nane;}
{return subrrenu; }
{return next;}

const ;
option nane

subrrenu
next option

first option in the nenu
nenu | D

last allocated ID

Menu: : Qption:: Qption (const char *str, const Menu *nenu) :

voi d Print (void);
i nt Choose (voi d)
private:
char *nane,; /1
const Menu *subrrenu; /1
otion *next; /1
b
otion *first; /1
i nt id; /1
static int lastld, /1
h
subrrenu(nenu)
{

name = new char [strlen(str) + 1];

strcpy(nane, str);
next = 0;

}

Menu: : Qption: : ~Qption (voi d)
{

del et e nane;

del et e subnenu;

}

void Menu:: Qption::Print (void)
{
cout << nane;
if (subnenu !'= 0)
cout << " ->";
cout << '\n'

}
int Menu:: Qption:: Choose (void) const
{
if (subnenu == 0)
return O;
el se
return submenu->Choose();
}

int Menu::lastld = 0;

Menu: : ~Menu (voi d)
{

250

C++ Essentials

Copyright © 2005 PragSoft

Menu: : Qotion *handy, *next;

for (handy = first; handy != 0; handy = next) ({
next = handy- >Next ();
del et e handy;

}
}
void Menu::lnsert (const char *str, const Menu *subnenu, const int pos)
{
Menu: : Qption *option = new ption(str, subnenu);
Menu: : Qotion *handy, *prev = 0;
int idx = 0;
/] set prev to point to before the insertion position
for (handy = first; handy != 0 & i dx++ ! = pos; handy = handy-
>Next ())
prev = handy;
if (prev == 0) { [l empty list
option->Next() = first; [/ first entry
first = option;
} else { /] insert
option->Next () = handy;
prev->Next () = option;
}
}
voi d Menu:: Del ete (const int pos)
{
Menu: : Qption *handy, *prev = 0;
int idx = 0;
/] set prev to point to before the del etion position
for (handy = first;
handy !'= 0 & handy->Next() !'= 0 & i dx++ ! = pos;
handy = handy->Next ())
prev = handy;
if (handy '= 0) {
if (prev == 0) /1l it's the first entry
first = handy->Next();
el se /1 it's not the first
prev->Next () = handy->Next ();
del et e handy;
}
}
int Menu::Print (void)
{
int n=0;

Menu: : Qotion *handy = first;

www. pragsoft.com Solutions to Exercises 251

for (handy = first; handy != 0; handy = handy->Next()) {
cout << ++n << ", "
handy->Print();

}

return n;

i nt Menu:: Choose (void) const
int choice, n;

do {
n=~rint();
cout << "Qption? ",
cin >> choi ce
} while (choice <= 0 || choice > n);

Menu: : Qotion *handy = first;
n =1,

/1 nove to the chosen option
for (handy = first; n != choice & handy != 0; handy = handy-
>Next ())
++n;

/1 choose the option:
n = handy- >Choose() ;

return (n == 0 ? choice : n);
}
7.1 #i ncl ude <string. h>

const int Max (const int x, const int y)

{
return x >=y ? x : v;
}
const doubl e Max (const doubl e x, const doubl e y)
{
return x >=y ? x : v;
}
const char* Max (const char *x, const char *y)
{
return strenp(x,y) >=07? x : vy,
}
7.2 class Set {
/...
friend Set operator - (Set& Set&); /1 difference

252 C++ Essentials Copyright © 2005 PragSoft

friend Bool operator <= (Set& Set&); /] subset

/...
h
Set operator - (Set &setl, Set &set?2)
{
Set res;
for (register i = 0; i < setl.card; ++)
if (!(setl.elens[i] & set2))
res.elens[res.card++] = setl.elens[i];
return res;
}
Bool operator <= (Set &setl, Set &set?2)
{
if (setl.card > set2.card)
return fal se;
for (register i = 0; i < setl.card; ++)
if (!(setl.elens[i] & set2))
return fal se;
return true;
}
7.3 class Binary {
/...
friend Binary operator - (const Binary, const Binary);
i nt operator [] (const int n)
{return bits[15-n] == "1 2?1 : 0;}
/...

Binary operator - (const Binary nl, const Binary n2)

{
unsi gned borrow = O;
unsi gned val ue;
Binary res = "0";
for (register i =15, i >=0; --i) {
value = (nl.bits[i] =='0" ?20: 1) -
(n2.bits[i] =="'0" ? 0: 1) + borrow
res.bits[i] = (value == -1 || value ==17?"'1: '0);
borrow = (value == -1 || borrow!=0 & value == 1 ? 1 : 0);
}
return res;
}
7.4 #i ncl ude <i ostream h>

class Matrix {
publ i c:
Matri x (const int rows, const int cols);

www. pragsoft.com Solutions to Exercises 253

Mat ri x (const Matrix&);
~Mat ri x (void);
doubl e& operator () (const int row, const int col);
Matrix& operator = (const Matrix&);
friend ostrean& operator << (ostrean& Matrix&);
friend Mtrix operator + (Matrix& Mtrix&);
friend Mtrix operator - (Matrix& Mtrix&);
friend Matrix operator * (Matrix& Mtrix&);
i nt Rows (void) {return rows;}
i nt Gl s (void) {return cols;}
pr ot ect ed:
class Henent { /1 nonzero el ement
publ i c:
Henent (const int row, const int col, double);
const int Row (void) {return row}
const int ol (void) {return col;}
doubl e& Value (void) {return value;}
Hement*& Next (void) {return next;}
H enent * CopylLi st (Bl enent *list);
voi d CeletelList (Henent *list);
private:
const int row, col; /1 row and col um of el erment
doubl e val ue; /1 elenent val ue
H enent *next ; /1 pointer to next el enent
h
doubl e& InsertH em (B enent *elem const int row const int
col);
i nt rows, cols; // matrix dinensions
B erment *el ens; /1 linked-1ist of elenents
h

Matrix::Eenent::Henent (const int r, const int ¢, double val)

row(r), col(c)

{

val ue = val;
next = 0;

}

Matrix:: B enment* Matrix::H enent:: CopyList (Hement *list)

{

H enent *prev = 0O;
Henent *first = 0;
H enent *copy;

for (; list I=0; list = list->Next()) {
copy = new Henent (Iist->Row(), list->Col(), list->Value());

if (prev

first = copy;

el se

== 0)

254

C++ Essentials

Copyright © 2005 PragSoft

prev->Next () = copy;
prev = copy;

}

return first;

}

void Matrix::Benent::DeleteList (B enent *list)
{

H enent *next;

for (; list '=0; list = next) {
next = list->Next();
delete list;

}

Il InsertBElemcreates a new el enent and inserts it before

/1 or after the el ement denoted by el em

doubl e& Matrix::InsertBl em (H enent *elem const int row const int

col)

{

H enment* newH em = new H enent (row, col, 0.0);

if (elem==celens & (elens == 0 || row < el ens->Row() ||

row == el ens->Row() && col

/1 insert in front of the list:
newH em >Next () = el ens;
el enrs = newH em

} else {
[l insert after elem
newH em >Next () = el em >Next ();
el em>Next () = newH em

}

return newd em >Val ue();

}

Matrix::Matrix (const int rows, const int cols)

{

Matri x::rows = rows;
Matrix::cols = cols;
elens = 0;
}
Matrix::Matrix (const Matrix &)
{
rows = mrows,
cols = mcoals;
el ens = m el ens->CopyLi st(mel ens) ;
}

Matrix::~Matrix (void)

< elens->l ())) {

www. pragsoft.com

Solutions to Exercises 255

{

el ens- >Del et eLi st (el ens) ;

}
Matri x& Matrix::operator = (const Matrix &m
{
el ens- >Del et eLi st (el ens) ;
rows = mrows;
cols = mcol s;
el ens = m el ens->CopyLi st(mel ens) ;
return *this;
}
doubl e& Matrix::operator () (const int row, const int col)
{
if (elens == 0 || row < el ens->Row() ||
row == el ens- >Row() &% col < el ens->Col ())
/1 create an elenent and insert in front:
return InsertH en{el ens, row, col);
/1 check if it's the first element in the list:
if (row==-elens->RoW() && col == el ens->C0l ())
return el ens->Val ue();
/1 search the rest of the list:
for (Hement *elem= elens; elem>Next() !'=0; elem= elem>Next())
if (row==elem>Next()->Row()) {
if (col == elem>Next()->Col())
return el em >Next ()->Val ue(); /1 found it!
else if (col < elem>Next()->Col())
br eak; /] doesn't exist
} else if (row < elem>Next()->Row())
br eak; /] doesn't exist
/1l create new elenent and insert just after elem
return InsertH en{elem row, col);
}
ostrean& operator << (ostream &s, Matrix &
{
Matrix::H enment *el em= mel ens;
for (register row=1;, row <= mrows; ++ow {
for (register col = 1; col <= mcols; ++col)
if (elem!=0 & elem>Row() == row & el em>Col () == col)
{

0s << elem>Val ue() << "\t';
elem= el em>Next ();

} else
0s << 0.0 << "\t';
0s << '\n';
}
return os;

256 C++ Essentials Copyright © 2005 PragSoft

}

Matrix operator + (Matrix &, Matrix &Qq)

{
Matrix n{p.rows, qg.cols);
/1 copy p:
for (Matrix::B enent *pe = p.elens; pe '=0; pe = pe->Next())
n{pe->Row(), pe->Col ()) = pe->Val ue();
/] add q:
for (Matrix::B enent *ge = g.elens; ge '=0; ge = ge->Next())
n{ge->Row(), ge->Col ()) += ge->Val ue();
return m
}
Matrix operator - (Matrix &, Matrix &q)
{
Matrix n{p.rows, qg.cols);
/1 copy p:
for (Hement *pe = p.elens; pe !'=0; pe = pe->Next())
n{pe->Row(), pe->Col ()) = pe->Val ue();
/] subtract q:
for (Hement *ge = g.elens; ge !'=0; ge = ge->Next())
n{ge->Row(), ge->Col ()) -= ge->Val ue();
return m
}
Matrix operator * (Matrix &, Matrix &q)
{
Matrix n{p.rows, g.cols);
for (Henent *pe = p.elens; pe !=0; pe = pe->Next())
for (Hement *qe = g.elens; ge !=0; ge = ge->Next())
if (pe->Ql () == ge->Row())
n(pe->Row(), qe->Col ()) += pe->Val ue() * ge->Val ue();
return m
}
7.5 #i ncl ude <string. h>

#i ncl ude <i ostream h>

class String {

publ i c:

String (const char*);
String (const String&;
String (const short);
~String (void);

String& operator = (const char*);

String& operator = (const String&);

char & operator [] (const short);

i nt Lengt h (voi d) {return(len);}

www. pragsoft.com Solutions to Exercises 257

friend String operator + (const String& const String&) ;
friend ostrean& operator << (ostrean®& String&);

pr ot ect ed:
char *chars; /1l string characters
short | en; /1 length of chars
h
String::String (const char *str)
{
len = strlen(str);
chars = new char[len + 1];
strcpy(chars, str);
}
String::String (const String &str)
{
len = str.len;
chars = new char[len + 1];
strcpy(chars, str.chars);
}
String::String (const short size)
{
len = size;
chars = new char[len + 1];
chars[0] ="'\0';
}
String::~String (void)
{
del ete chars;
}
String& String::operator = (const char *str)
{
short strLen = strlen(str);
if (len!=strLen) {
del ete chars;
len = strlLen;
chars = new char[strLen + 1];
}
strcpy(chars, str);
return(*this);
}

String& String::operator = (const String &str)

if (this != &str) {
if (len!=str.len) {
del ete chars;
len = str.len;

258 C++ Essentials Copyright © 2005 PragSoft

7.6

chars = new char[str.len + 1];

}
strcpy(chars, str.chars);
}
return(*this);
}
char& String::operator [] (const short index)
{
static char dummy = "\0';
return(index >= 0 & index < len ? chars[index] : dummy);
}

String operator + (const String &trl, const String &str2)
{

String result(strl.len + str2.1en);

strcpy(result.chars, strl. chars);
strcpy(result.chars + strl.len, str2.chars);
return(result);

}
ostrean& operator << (ostream &ut, String &str)
{
out << str.chars;
return(out);
}

#i ncl ude <string. h>
#i ncl ude <i ostream h>

enum Bool {fal se, true};
typedef unsigned char uchar;

class BitVec {

publ i c:
Bi t Vec (const short dim;
Bi t Vec (const char* hits);
Bi t Vec (const BitVecd;
~Bit Vec (void) { delete vec; }
Bi tVec& operator = (const BitVec®;
Bi t Vec& operator &= (const BitVec®;
Bi tVec& operator |= (const BitVec&;
Bi t Vec& operator "= (const Bit\Vec&;

Bi t Vec& operat or <<=(const short);
Bi t Vec& operat or >>=(const short);

i nt operator [] (const short idx);
void Set (const short idx);
void Reset (const short idx);
BitVec operator ~ 0);

BitVec operator & (const Bit\Vec&;

www. pragsoft.com Solutions to Exercises

259

BitVec operator | (const BitVec&;

BitVec operator " (const BitVec&;
BitVec operator << (const short n);
BitVec operator >> (const short n);
Bool operator == (const BitVec&;
Bool operator != (const BitVec&;

friend ostrean& operator << (ostrean® BitVec&);

pr ot ect ed:
uchar *vec; /1 vector of 8*bytes bits
short byt es; /1 bytes in the vector

1

/1l set the bit denoted by idx to 1
inline void BitVec::Set (const short idx)
{

}

vec[idx/8] |= (1 << idx¥B);

/1 reset the bit denoted by idx to O
inline void BitVec::Reset (const short idx)

{
vec[idx/8] & ~(1 << idx9B);
}
inline BitVec& BitVec::operator & (const BitVec &)
{
return (*this) = (*this) &v;
}
inline BitVec& BitVec::operator |= (const BitVec &)
{
return (*this) = (*this) | v;
}
inline BitVec& BitVec::operator "= (const BitVec &)
{
return (*this) = (*this) » v;
}
inline BitVec& BitVec::operator <<= (const short n)
{
return (*this) = (*this) << n;
}
inline BitVec& BitVec::operator >>= (const short n)
{
return (*this) = (*this) >> n;
}

260 C++ Essentials Copyright © 2005 PragSoft

/1 return the bit denoted by idx
inline int BitVec::operator [] (const short idx)

{
return vec[idx/8] & (1 << idx%) ? true : fal se;
}
inline Bool BitVec::operator != (const BitVec &)
{
return *this == v ? false : true;
}
BitVec::BitVec (const short din
{
bytes =dim/ 8 + (dim%8 =07?0: 1);
vec = new uchar[bytes];
for (register i = 0; i < bytes; ++i)
vec[i] = 0; /1l all bits areinitially zero
}
BitVec::BitVec (const char *hits)
{
int len = strlen(bits);
bytes =len/ 8 + (len %8 =0 7?0 : 1);
vec = new uchar[bytes];
for (register i = 0; i < bytes; ++i)
vec[i] = 0; /] initialize all bits to zero
for (i =len- 1; i >=0; --i)
if (*bits++ =="1") Il set the 1 bits
vec[i/8] |= (1 << (IiM));
}
BitVec::BitVec (const BitVec &)
{
bytes = v. bytes;
vec = new uchar[bytes];
for (register i =0; i < bytes; ++)// copy bytes
vec[i] = v.vec[i];
}
BitVec& BitVec::operator = (const BitVec& v)
{
for (register i =0; i < (v.bytes < bytes ? v.bytes : bytes); ++i)
vec[i] = v.vec[i]; /'l copy bytes
for (; i < bytes; ++) /] extra bytes in *this
vec[i] = 0;
return *this;
}

/1 bitw se COMPLEMENT

www. pragsoft.com Solutions to Exercises 261

BitVec BitVec::operator ~ (void)

{
BitVec r(bytes * 8);
for (register i =0; i < bytes; ++i)
r.vec[i] = ~vec[i];
return r;
}

/1 bitw se AND
BitVec BitVec::operator & (const BitVec &)

{
BitVec r((bytes > v.bytes ? bytes : v.bytes) * 8);
for (register i =0; i < (bytes <v.bytes ? bytes : v.bytes); ++i)
r.vec[i] = vec[i] & v.vec[i];
return r;
}
/1 bitwse R
BitVec BitVec::operator | (const BitVec &)
{
BitVec r((bytes > v.bytes ? bytes : v.bytes) * 8);
for (register i =0; i < (bytes <v.bytes ? bytes : v.bytes); ++i)
r.vec[i] = vec[i] | v.vec[i];
return r;
}

/1 bitw se excl usive-CR
BitVec BitVec::operator M (const BitVec &)

{
BitVec r((bytes > v.bytes ? bytes : v.bytes) * 8);
for (register i =0; i < (bytes <v.bytes ? bytes : v.bytes); ++i)
r.vec[i] = vec[i] " v.vec[i];
return r;
}

[l SHFT LEFT by n bits
BitVec BitVec::operator << (const short n)

{
BitVec r(bytes * 8);
i nt zeros =n/ 8 /] bytes on the | eft to becone zero
i nt shift = n %8; // left shift for renai ning bytes
register i;
for (i = bytes - 1; i >= zeros; --i)// shift bytes left

r.vec[i] = vec[i - zeros];

for (; i >=0; --i) /1 zero left bytes

r.vec[i] = 0;
unsi gned char prev = 0;

for (i = zeros; i <r.bytes; ++) { /1 shift bits left
r.vec[i] = (r.vec[i] << shift) | prev;

262 C++ Essentials Copyright © 2005 PragSoft

prev = vec[i - zeros] >> (8 - shift);
}

return r;

}

/I SHFT RQGHT by n bits
BitVec BitVec::operator >> (const short n)

{
BitVec r(bytes * 8);
i nt zeros = n/ 8§ /1 bytes on the right to becone
zero
i nt shift = n %8; /1 right shift for remaining bytes
register i;
for (i =0; i < bytes - zeros; ++i) /1 shift bytes right
r.vec[i] = vec[i + zeros];
for (; i < bytes; ++) /1l zero right bytes
r.vec[i] = 0;
uchar prev = 0;
for (i =r.bytes - zeros - 1; i >=0; --i) {// shift bits right
r.vec[i] = (r.vec[i] >> shift) | prev;
prev = vec[i + zeros] << (8 - shift);
}
return r;
}
Bool BitVec::operator == (const BitVec &)
{
i nt snaller = bytes < v.bytes ? bytes : v.bytes;
register i;
for (i =0; i <smaller; ++) /1 conpare bytes
if (vecl[i] '=v.vec[i])
return fal se;
for (i =smaller; i < bytes; ++) /] extra bytes in first operand
if (vecl[i] '=0)
return fal se;
for (i =smaller; i <v.bytes; ++) // extra bytes in second
oper and
if (v.vec[i] !'= 0)
return fal se;
return true;
}

ostrean& operator << (ostream &s, Bit\Vec &)

{
const int nmaxBytes = 256;
char buf[maxBytes * 8 + 1];
char *str = buf;
i nt n = v.bytes > naxBytes ? naxBytes : v.bytes;

www. pragsoft.com Solutions to Exercises 263

for (register i =n-1; i >=0; --i)

for (register j =7,] >=0; --j)
*str++ = v.vec[i] & (1 <<j) ?2'1 : '0;

*str = '"\0";

0s << buf;

return os;
}

8.1 #i ncl ude "bitvec. h"

enum Mont h {

Jan, Feb, Nar, Apr, My, Jun, Jul, Aug, Sep, Cct, Nov, Dec
h

inline Bool LeapYear(const short year) {return year% == 0;}

class Year : public BitVec {
publ i c:
Year (const short year);
voi d VorkDay (const short day); // set day as work day
voi d GfDay (const short day); // set day as off day

Bool Vorking (const short day); // true if a work day
short Day (const short day, /] convert date to day
const Month nonth, const short year);
pr ot ect ed:
short year; /1 cal endar year
b
Year:: Year (const short year) : BitVec(366)
{
Year::year = year;
}
voi d Year::WrkDay (const short day)
{
Set (day) ;
}
void Year::ffDay (const short day)
{
Reset (day) ;
}
Bool Year::Wrking (const short day)
{
return (*this)[day] == 1 ? true : fal se;
}

short Year::Day (const short day, const Month nonth, const short year)
{
static short days[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 20, 31, 30, 31

264 C++ Essentials Copyright © 2005 PragSoft

b
days[Feb] = LeapYear(year) ? 29 : 28;

int res = day;

for (register i =Jan; i < nonth; ++)
res += days[i];
return res;
}
8.2 #incl ude <stdlib. h>

#i ncl ude <time. h>
#include "matrix. h"

inline doubl e Abs(double n) {returnn >=07?n: -n;}

class LinEgns : public Matrix {

publ i c:
Li nEgns (const int n, double *soln);
voi d CGenerat e (const int coef);
voi d Sol ve (void);
private:

Matrix sol ution;

=

Li nEgns: : Li nEgns (const int n, doubl e* sol n)
Matrix(n, n+l), solution(n, 1)

{
for (register r = 1; r <= n; ++r)
solution(r, 1) = soln[r - 1];
}
voi d Li nEgns: : Generate (const int coef)
{
int md = coef / 2
srand((unsigned int) time(0)); // set random seed
for (register r = 1; r <= Rows(); ++r) {
(*this)(r, Gls()) =0.0; // initialize right-hand side
/1 generate equations whose coefficients
/1 do not exceed coef:
for (register c =1, ¢ < Qols(); ++c) {
(*this)(r, c) = (double) (md - randon{1000) % coef);
(*this)(r, Qls()) += (*this)(r, ¢) * solution(c, 1);
}
}
}

/1 solve equations using Gaussian elinination

www. pragsoft.com Solutions to Exercises 265

voi d Li nEgns: : Sol ve (voi d)

{
doubl e const epsilon = 1le-5;// 'alnost zero' quantity
doubl e tenp;
int diag, piv, r, c;

for (diag = 1; diag <= Rows(); ++diag) {// diagonal
piv = diag; /1 pivot
for (r =diag + 1; r <= Rows(); ++r)// upper triangle
if (Abs((*this)(piv, diag)) < Abs((*this)(r, diag)))
piv =r; /1 choose new pi vot

/1 make sure there is a unique sol ution:
if (Abs((*this)(piv, diag)) < epsilon) {
if (Abs((*this)(diag, Cols())) < epsilon)
cout << "infinite solutions\n";
el se
cout << "no sol ution\n";
return;
}
if (piv!=diag) {
/1l swap pivit wth diagonal:
for (c = 1; ¢ <= Qols(); ++c) {
tenp = (*this)(diag, ¢);
(*this)(diag, c) = (*this)(piv, ¢);
(*this)(piv, ¢) = tenp;
}
}

/1 nornalise diag row so that njdiag, diag] = 1:

tenp = (*this)(diag, diag);

(*this)(diag, diag) = 1.0;

for (c =diag + 1; ¢ <= ls(); ++C)
(*this)(diag, c) = (*this)(diag, c) / tenp;

/1 nowelimnate entries bel owthe pivot:
for (r =diag + 1; r <= Rows(); ++r) {

doubl e factor = (*this)(r, diag);

(*this)(r, diag) = 0.0;

for (c =diag + 1; ¢ <= ols(); ++c)

(*this)(r, c) -= (*this)(diag, c) * factor;

}
/1 display elinmnation step:
cout << "elinmnated bel ow pivot in colum " << diag << '\n';
cout << *this;

}

/1 back substitute:
Matrix sol n(Rows(), 1);
sol n(Rows(), 1) = (*this)(Rows(), Gols()); // the last unknown

for (r = Rows() - 1;, r >=1; --r) { /1 the rest
doubl e sum = 0. 0;

266 C++ Essentials Copyright © 2005 PragSoft

for (diag =r + 1; diag <= Rows(); ++di ag)
sum+= (*this)(r, diag) * soln(diag, 1);

sol n(r,

}

cout << "solution:\n";
cout << soln;

1) = (*this)(r, Gls()) - sum

public BitVec {

(const short maxCard) : BitVec(maxCard) {}
(BitVec& v) : BitVec(v) {*this = (Enunbet&)v;}

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

Enuntet & oper at or
Enuntet & oper at or

+ (Enunbet &s, Enuntet &t);
- (BEnunbet &s, Enuntet &t);
* (EnunBet &s, EnunBet &t);
% (const short elem Enunbet &s);

<= (Enunbet &s, Enuntet &t);
>= (Enunbet &s, Enuntet &t);
<< (Enunget &s, const short el en);
>> (Enunbet &s, const short el en);

inline EnunBet operator + (EnunBet &, EnunBet &) // union

inline EnunBet operator - (EnunBet &, EnunBet &) // difference

inline EnunBet operator * (EnunBet &, EnunBet &) // intersection

}

8.3 #i ncl ude "bitvec. h"
cl ass Enuntet :
publ i c:

Enunset
Enunset
friend Enuntet
friend Enuntet
friend Enuntet
friend Bool
friend Bool
friend Bool
friend
friend
=
{
return s | t;
}
{
return s & ~t;
}
{
return s &t;
}
i nl'i ne Bool
{
return t[elenj;
}
i nl'i ne Bool
{
return (t &s) == s;
}
i nl'i ne Bool
{

return (t &s) ==t;

operator % (const short elem Enuntet &)

operator <= (Enuntet &s, Enunbet &t)

operator >= (Enuntet &, Enunbet &t)

www. pragsoft.com

Solutions to Exercises

267

}

EnunBet & operat or << (Enuntet &s, const short el en

{
s. Set (el em;
return s;
}
Enunget & operat or >> (Enuntet &s, const short el en
{
S. Reset (el enj;
return s;
}
8.4 typedef int Key;
typedef double Data;
enum Bool { false, true };
cl ass Dat abase {
publ i c:
virtual void Insert (Key key, Data data) {}
virtual void Celete (Key key) {}
virtual Bool Search (Key key, Data &dat a) {return fal se;}
h
A B-tree conssts of a set of nodes, where each node may contain up to 2n
records and have 2h+1 children. The number n is cadled the order of the tree.
Every node in the tree (except for the root node) must have & least n records. This
ensures that at least 50% of the Storage capacity is utilized. Furthermore, a nonleaf
node that contains m records must have exactly m+1 children. The most important
property of a B-tree isthat the insert and delete operations are designed so that the
tree remains balanced at dl times.
#i ncl ude <i ostream h>
#i ncl ude "dat abase. h"
const int maxQder = 256; /1l max tree order
class Blree : public Database {
publ i c:
cl ass Page;
class Item{ /1 represents each stored item
publ i c:
Item (voi d) {right =0;}
Item (Key, Data);
Key& KeyOh (voi d) {return key;}
Data& Datad (void) {return data;}
Page*& Subtree (void) {return right;}
friend ostrean& operator << (ostrean®, Iten®);
private:
Key key; [l items key
268 C++ Essentials Copyright © 2005 PragSoft

Dat a dat a; /]l items data
Page *right; // pointer to right subtree
b
cl ass Page { /1 represents each tree node
publ i c:
Page (const int size);
~Page (void) {delete itens;}
Page* & Left (const int oflten;
Page* & R ght (const int oflten;
const int S ze (voi d) {return size;}
int& Used (voi d) {return used;}
Iten& operator [] (const int n) {return itens[n];}
Bool Bi narySearch(Key key, int & dx);
i nt Copyltens (Page *dest, const int srcldx,
const int destldx, const int count)
Bool Insertitem (Item& tem int atldx);
Bool Celeteltem (int atldx);
voi d PrintPage (ostrean& os, const int margin);
private:
const int si ze; /!l max no. of itens per page
i nt used; /1 no. of itens on the page
Page *left; // pointer to the |eft-nmost subtree
Item *itens; // the itens on the page
b
publ i c:
BTree (const int order);
~BTr ee (voi d) {FreePages(root);}
virtual void I nsert (Key key, Data data);
virtual void el ete (Key key);
virtual Bool Sear ch (Key key, Data &data);

friend ostrean& operator << (ostrean® BTree&);

const int order;// order of tree

pr ot ect ed:

Page *root;

Page *buf P,
virtual void Fr eePages
virtual |tent Sear chAux
virtual |tent | nser t Aux
virtual void Del et eAux1
virtual void Del et eAux2
virtual void Under f | ow
b

/!l root of the tree

/1 buffer page for distribution/nergi ng

(Page *page);
(Page *tree, Key key);
(ltem*item Page *page);

(Key key, Page *page, Bool &underflow);
(Page *parent, Page *page,
const int idx, Bool &underflow;

(Page *page, Page *child,
int idx, Bool &underflow;

BTree::Item:Iltem(Key k, Data d)

{

www. pragsoft.com

Solutions to Exercises

269

key = k;

data = d;
right = 0;
}
ostrean& operator << (ostrean& os, Blree::ltemé&ten)
{
0s << itemkey << ' ' << itemdata,;
return os;
}
BTree: : Page: : Page (const int sz) : size(sz)
{
used = 0;
left = 0;
itens = new ltenjsize];
}

/] return the left subtree of an item

BTree: : Page*& BTree: : Page: : Left (const int oflten)
{

}

return ofItem<=0 ? left: itens[of I[tem- 1].Subtree();

/1 return the right subtree of an item

BTree: : Page*& BTree: : Page: : R ght (const int oflten
{

}

return ofI'tem< 0 ? left : itens[oflten]. Subtree();

/1 do a binary search on itens of a page
[l returns true if successful and fal se ot herw se

Bool BTree:: Page:: BinarySearch (Key key, int & dx)
{

int low= 0;

int high = used - 1;

int md;

do {
md = (low+ high) / 2
if (key <= items[md].KeyCr())

high = md - 1, /] restrict to lower half
if (key >= items[md].Key(r())
low=md + 1, /1 restrict to upper half

} while (I ow <= high);
Bool found = low- high > 1,

id<x = found ? mid : high;

270 C++ Essentials Copyright © 2005 PragSoft

return found;

}

/1 copy a set of itens frompage to page

int BTree:: Page:: Copyltens (Page *dest, const int srcldx,
const int destldx, const int count)

{
for (register i = 0; i <count; ++)// straight copy
dest->itens[destldx +i] = itens[srcldx +i];
return count;
}

/] insert an iteminto a page

Bool BTree::Page::Insertitem(ltem& tem int atldx)

{
for (register i = used;, i > atldx; --i) // shift right
itens[i] =itens[i - 1];
itens[atldx] =item /] insert
return ++used >= size; /'l overflow?
}

/1 delete an itemfroma page

Bool BTree::Page::Deleteltem (int atldx)

{
for (register i = atldx; i <wused - 1; ++) // shift left
itens[i] =itens[i + 1];
return --used < size/2; /1 underfl ow?
}

/1 recursively print a page and its subtrees

voi d BTree:: Page:: PrintPage (ostrean& os, const int margin)

{
char nargBuf[128];

/] build the nargin string:

for (int i =0; i <= margin;, ++)
margBuf[i] ="' ';

nmargBuf[i] = '\0';

/] print the left-nost child:
if (Left(0) !=0)
Left (0)->Print Page(os, margin + 8);

/1 print page and renai ning children:
for (i =0; i <used; ++) {

0s << nar gBuf;

0s << (*this)[i] <<'\n';

if (Rght(i) !'=0)

www. pragsoft.com Solutions to Exercises 271

R ght (i)->PrintPage(os, nargin + 8);

}
}
BTree: :BTree (const int ord) : order(ord)
{
root = 0;
buf P = new Page(2 * order + 2);
}
voi d BTree::Insert (Key key, Data data)
{
Itemiten{key, data), *receive;
if (root == 0) { /1 enpty tree
root = new Page(2 * order);
root->lnsertliten{item 0);
} else if ((receive = InsertAux(& tem root)) !'=0) {
Page *page = new Page(2 * order); /1 new root
page- >l nsertlten{*receive, 0);
page->Left (0) = root;
root = page;
}
}
voi d BTree:: Del ete (Key key)
{
Bool underfl ow,
Lel et eAux1(key, root, underflow;
if (underflow & root->Wsed() == 0) { /1 dispose root
Page *tenp = root;
root = root->Left(0);
del ete tenp;
}
}
Bool BTree:: Search (Key key, Data &data)
{
Item*item = SearchAux(root, key);
if (item== 0)
return fal se;
data = item>Datadf ();
return true;
}

ostrean& operator << (ostrean& os, BTree & ree)
{
if (tree.root !'=0)
tree.root->Print Page(os, 0);
return os;

272 C++ Essentials Copyright © 2005 PragSoft

}

/1 recursively free a page and its subtrees

voi d BTree:: FreePages (Page *page)

{
if (page '= 0) {
Fr eePages(page- >Left (0));
for (register i = 0; i < page->Wsed(); ++)
Fr eePages(page->Ri ght (i));
del et e page;
}
}

/1 recursively search the tree for an itemw th mat chi ng key

BTree::Itent BTree:: SearchAux (Page *tree, Key key)

{
i nt i dx;
[tem *item
if (tree == 0)
return O;
if (tree->Bi narySearch(key, idx))
return & (*tree)[idx]);
return SearchAux(idx < 0 ? tree->Left(0)
: tree->Right (idx), key);
}

/] insert aniteminto a page and split the page if it overflows

BTree::Itent Blree::lnsertAux (Item*item Page *page)

{
Page *chil d;
int idx;

i f (page->Bi narySearch(item>Key((), idx))
return O; /]l already in tree

if ((child = page->Rght(idx)) !'= 0)

item= InsertAux(item child); /1 childis not a |eaf
if (item!=0) { /]l page is a leaf, or passed up
if (page->Wsed() < 2 * order) { /1 insert in the page
page- >l nsertlten{*item idx + 1);
} else { /1 page is full, split

Page *newP = new Page(2 * order);

buf P- >Used() = page->Copyl tens(buf P, 0, 0, page->Used());
buf P->I nsertlten{*item idx + 1);

int size = bufP->Used();

www. pragsoft.com Solutions to Exercises 273

int half = sizel2;

page- >Used() buf P- >Copyl t ens(page, 0, 0, half);

newP- >Used() buf P- >Copyl t ens(newP, half + 1, 0, size -
hal f - 1);
newP->Left (0) = buf P->R ght (hal f);
*item= (*bufP)[hal f]; [/l the mditem
item>Subtree() = newp;
return item
}
}
return O;
}

/1 delete an itemfroma page and deal with underfl ows

voi d BTree:: Del et eAux1l (Key key, Page *page, Bool &underfl ow)
{

i nt i dx;

Page *chi |l d;

underfl ow = fal se;
if (page == 0)
return;

i f (page->Bi narySearch(key, idx)) {

if ((child = page->Left(idx)) == 0) { /1l page is a leaf
under f | ow = page->Del et el t en{i dx) ;

} else { /]l page is a subtree
/1 delete fromsubtree:
Del et eAux2(page, child, idx, underflow;
i f (underflow)

Underfl ow(page, child, idx - 1, underflow;

}

} else { /1l is not on this page
child = page->R ght (i dx);
Del et eAux1(key, child, underflow); /1 should be in child

i f (underflow)
Under fl owpage, child, idx, underflow;

}

/1l delete an itemand deal with underflows by borrow ng
/1 itens from nei ghboring pages or mergi ng two pages

voi d BTree:: Del et eAux2 (Page *parent, Page *page,
const int idx, Bool &underflow

{
Page *child = page- >R ght (page->Used() - 1);

if (child!=0) { /1l page is not a |eaf

274

C++ Essentials Copyright © 2005 PragSoft

Del et eAux2(parent, child, idx, underflow); // go another |evel
down
i f (underflow
Under f| ow(page, child, page->Used() - 1, underflow);

} else { /1 page is a |eaf

/1 save right:

Page *right = parent->R ght(idx);

/1 borrow an itemfrompage for parent:

page- >Copyl t ens(parent, page->Wsed() - 1, idx, 1);

/1 restore right:

parent->R ght (i dx) = right;

under f | ow = page- >Del et el t en{ page- >Used() - 1);

}
/1 handl e underfl ows

voi d BTree:: Underfl ow (Page *page, Page *child,
int idx, Bool &underflow)

{
Page *left = idx < page->Wsed() - 1 ? child : page->Left(idx);
Page *right = left == child ? page->R ght(++ dx) : child;
/1 copy contents of left, parent item and right onto bufP:
int size = left->Copyltens(bufP, 0, 0, left->Used());
(*buf P)[size] = (*page)[idx];
buf P- >R ght (si ze++) = right->Left(0);
size += right->Copyltens(buf P, 0, size, right->Used());
if (size >2 * order) {
/1 distribute buf P itens between I eft and right:
int half = sizel2;
| eft->Used() = bufP->Copyltens(left, 0, 0, half);
right->Used() = buf P->Copyltens(right, half + 1, 0, size - half
- 1);
right->Left(0) = buf P->Ri ght(hal f);
(*page)[idx] = (*buf P)[hal f];
page->Ri ght (i dx) = right;
under fl ow = fal se;
} else {
/1l nmerge, and free the right page:
| eft->Used() = bufP->Copyltens(left, 0, O, size);
under f | ow = page- >Del et el t en(i dx) ;
del ete right;
}
}

A B*-tree is a B-tree in which most nodes are at least 2/3 full (instead of 1/2
full). Instead of plitting a node as soon as it becomes full, an attempt is made to
evenly digtribute the contents of the node and its neighbor(s) between them. A
node is split only when one or both of its neighbors are full too. A B*-tree

www. pragsoft.com Solutions to Exercises 275

fecilitates more economic utilization of the avallable store, Snce it ensures that a
least 66% of the storage occupied by the tree is actudly used. As a result, the
height of the tree is smdler, which in turn improves the search speed. The search
and ddete operations are exactly as in a B-treg; only the insertion operation is
different.

class Btar : public Blree {

publ i c:

BSt ar (const int order) : Blree(order) {}
virtual void I nsert (Key key, Data data);
pr ot ect ed:

virtual Itenf InsertAux (Item*item Page *page);
virtual Itenf Overfl ow (Item*item Page *page,

Page *child, int idx);
1

/1 insert with overfl ow underfl ow handl i ng

void BStar::Insert (Key key, Data data)

{

Itemiten{key, data);

I'tem *overfl ow

Page *left, *right;

Bool dummy;

if (root == 0) { [l enpty tree
root = new Page(2 * order);
root->lnsertliten{item 0);

} else if ((overflow = InsertAux(&tem root)) !=0) {
left = root; /1 root becores a left child
root = new Page(2 * order);
right = new Page (2 * order);
root->lnsertlten{*overflow O0);
root->Left (0) = left; /1l the left-most child of root
root->Right(0) =right; // the right child of root
right->Left(0) = overfl ow>Subtree();

/1 right is underflown (size == 0):
Underflow(root, right, 0, dumy);
}
}

/] inserts and deal s with overfl ows

Itent BStar::InsertAux (Item*item Page *page)
{

Page *chil d;

int idx;

i f (page->Bi narySearch(item>Key((), idx))
return O; /1l already in tree

276 C++ Essentials Copyright © 2005 PragSoft

if ((child = page->Rght(idx)) !'=0) {
/1 child not a leaf:
if ((item=InsertAux(item child)) !'=0)
return Overflowitem page, child, idx);
} else if (page->Wsed() <2 * order) { // itemfits in node
page- >l nsertlten{*item idx + 1);
} else { /1 node is full
int size = page->Used();
buf P- >Used() = page->Copyl tens(buf P, 0, 0, size);
buf P->I nsertlten{*item idx + 1);
buf P- >Copyl t ens(page, O, 0, size);
*item= (*buf P)[size];
return item

}

return O;

}

/1 handl es underfl| owns

Itent BStar::Overflow (Item*item Page *page,
Page *child, int idx)
{
Page *left = idx < page->Wsed() - 1 ? child : page->Left(idx);
Page *right = left == child ? page->R ght(++ dx) : child;

/1 copy left, overflown and parent itens, and right into buf:
buf P->Used() = | eft->Copyltens(bufP, 0, 0, left->Used());
if (child=1left) {
buf P->I nsertlten{*item buf P->Used());
buf P->I nsert I ten{(*page) [i dx], bufP->Used());
buf P- >R ght (buf P->Used() - 1) = right->Left(0);
buf P- >Used() +=
right->Copyl tens(buf P, 0, buf P->Used(), right->Used());
} else {
buf P->I nsert I ten{(*page)[i dx], bufP->Used());
buf P- >R ght (buf P->Used() - 1) = right->Left(0);
buf P- >sed() +=
right->Copyl tens(buf P, 0, bufP->Used(), right->Used());
buf P->I nsertlten{*item buf P->Used());
}
if (buf P->Used() <4 * order + 2) {
/1 distribute buf between left and right:
int size = bufP->Used(), half;

| eft->Used() = bufP->Copyltens(left, 0, O, half = sizel2);
right->Used() = buf P->Copyltens(right, half + 1, 0, size - half
- 1);
right->Left(0) = buf P->R ght(hal f);
(*page)[idx] = (*buf P)[hal f];
page->Ri ght (i dx) = right;
return O;
} else {

www. pragsoft.com Solutions to Exercises 277

[l split int 3 pages:
Page *newP = new Page(2 * order);
int ndl, md2;

mdl = left->Wsed() = buf P->Copyltens(left, 0, O, (4 * order +
1) / 3);

md2 = right->Used() = buf P->Copyltens(right, mdl + 1, 0, 4 *
order / 3);

md2 += mdl + 1;
newP- >Used() = buf P->Copyltens(newP, md2 + 1, 0, (4 * order +
2) I 3);

right->Left(0) = buf P->R ght(mdl);

buf P->R ght (mdl) = right;

newP->Left (0) = buf P->R ght (n d2);

buf P- >R ght (m d2) = newp,

(*page)[idx] = (*buf P)[md2];

if (page->Wsed() < 2 * order) {
page- >l nsertlten((*buf P)[mdl], idx);
return O;

} else {
*item= (*page)[page- >Used() - 1];
(*page) [page->Used() - 1] = (*buf P)[mdi];
return item

}

9.1 tenpl at e <cl ass Type>
void Snap (Type &, Type &)
{
Type tnp = X;
X =y;
y = tnp;
}

9.2 #i ncl ude <string. h>
enum Bool {fal se, true};

tenpl at e <cl ass Type>
voi d Bubbl eSort (Type *names, const int size)

{
Bool swapped;

do {
swapped = fal se;
for (register i =0; i <size - 1; ++) {
if (names[i] > names[i+1]) {

Type tenp = nanes[i];
names[i] = names[i +1];
narmes[i +1] = tenp;
swapped = true;

278 C++ Essentials Copyright © 2005 PragSoft

}
}
} while (swapped);
}

/1 specialization:

voi d Bubbl eSort (char **panes, const int size)

{
Bool swapped;

do {
swapped = fal se;
for (register i =0; i <size - 1; ++) {
if (strenp(names[i], names[i+1]) >0) {
char *tenp = nanes[i];
names[i] = names[i +1];
names[i +1] = tenp;
swapped = true;
}
}
} while (swapped);
}

9.3 #i ncl ude <string. h>
#i ncl ude <i ostream h>

enum Bool {fal se,true};
typedef char *Str;

tenpl at e <cl ass Type>
cl ass BinNode {

publ i c:
B nNode (const Type&);
~Bi nNode (void) {}
Type& Val ue (void) {return value;}
Bi nNode*& Left (void) {return left;}
B nNode*& R ght (void) {returnright;}
voi d FreeSubtree (B nNode *subtree);
voi d I nsert Node (B nNode *node, Bi nNode *&subtree);
voi d el eteNode (const Type& B nNode *&subtree);
const BinNode* Fi ndNode (const Type& const BinNode *subtree);
voi d PrintNode (const Bi nNode *node);
private:
Type val ue; /1 node val ue
B nNode *left; /1l pointer to left child
B nNode *right; /1l pointer toright child
b

www. pragsoft.com Solutions to Exercises 279

tenpl at e <cl ass Type>
class BinTree {
publ i c:
Bi nTree (void);
~Bi nTree(voi d);
voi d Insert (const Type &al);
voi d Delete (const Type &val);
Bool Fi nd (const Type &val);
voi d Print (void);

pr ot ect ed:
Bi nNode<Type> *root; // root node of the tree

b

tenpl at e <cl ass Type>
B nNode<Type>: : Bi nNode (const Type &val)
{

val ue = val;
left =right = 0;
}

/1 specialization:

B nNode<Str>: : BinNode (const Str &str)

{
val ue = new char[strlen(str) + 1];
strcpy(val ue, str);
left =right = 0;

}

tenpl at e <cl ass Type>
voi d Bi nNode<Type>: : FreeSubt ree (B nNode<Type> *node)

{
if (node '=0) {
FreeSubt ree(node- >l ef t);
FreeSubt ree(node->ri ght);
del et e node;
}
}

tenpl at e <cl ass Type>
voi d Bi nNode<Type>: : | nsert Node (Bi nNode<Type> *node, Bi nNode<Type>
*&subt r ee)
{
if (subtree == 0)
subtree = node;
el se if (node->val ue <= subtree->val ue)
I nsert Node(node, subtree->left);
el se
I nsert Node(node, subtree->right);

280 C++ Essentials Copyright © 2005 PragSoft

/1 specialization:

voi d Bi nNode<Str>: : I nsert Node (Bi nNode<Str> *node, Bi nNode<Str>
*&subt r ee)
{
if (subtree == 0)
subtree = node;
el se if (strcnp(node->val ue, subtree->value) <= 0)
I nsert Node(node, subtree->left);
el se
I nsert Node(node, subtree->right);

}

tenpl at e <cl ass Type>
voi d Bi nNode<Type>: : Del et eNode (const Type &al, Bi nNode<Type>
*&subt r ee)
{ .
int cnp;

if (subtree == 0)

return;
if (val < subtree->val ue)

Del et eNode(val , subtree->l eft);
else if (val > subtree->val ue)

Del et eNode(val , subtree->right);

el se {
B nNode* handy = subtree;
if (subtree->left == 0) /1 no left subtree

subtree = subtree->right;

else if (subtree->right == 0) /1 no right subtree
subtree = subtree->left;

el se { /1 left and right subtree
subtree = subtree->right;
/] insert left subtree into right subtree:
I nsert Node(subt ree->l eft, subtree->right);

}
del et e handy;

}

/1 specialization:

voi d Bi nNode<Str>: : Del et eNode (const Str &str, B nNode<Str> *&subtree)

{
int cnp;

if (subtree == 0)
return;

if ((cnp = strcnp(str, subtree->value)) < 0)
Del et eNode(str, subtree->left);

elseif (cnp > 0)
Del et eNode(str, subtree->right);

www. pragsoft.com Solutions to Exercises 281

el se {

B nNode<Str>* handy = subtree;

if (subtree->left == 0) /1 no left subtree
subtree = subtree->right;

else if (subtree->right == 0) /1 no right subtree
subtree = subtree->left;

el se { /1 left and right subtree
subtree = subtree->right;
/] insert left subtree into right subtree:
I nsert Node(subt ree->l eft, subtree->right);

}
del et e handy;

}

tenpl at e <cl ass Type>
const Bi nNbde<Type>*
B nNode<Type>: : Fi ndNode (const Type &al, const B nNode<Type> *subtree)
{
if (subtree == 0)
return O;
if (val < subtree->val ue)
return Fi ndNode(val, subtree->left);
if (val > subtree->val ue)
return Fi ndNode(val, subtree->right);
return subtree;

}

/1 specialization:

const Bi nNode<St r >*
B nNode<Str>: : FindNode (const Str &str, const Bi nNode<Str> *subtree)

{ .
int cnp;
return (subtree == 0)
?0
: ((cnp = strcnp(str, subtree->value)) <0
? FindNode(str, subtree->left)
(cmp >0
? FindNode(str, subtree->right)
. subtree));
}

tenpl at e <cl ass Type>
voi d Bi nNode<Type>: : Pri nt Node (const B nNode<Type> *node)
{
if (node !'=0) {
Pri nt Node(node- >l eft);

cout << node->val ue << ;
Pri nt Node(node->ri ght);

282 C++ Essentials Copyright © 2005 PragSoft

}

tenpl at e <cl ass Type>
voi d Bi nTree<Type>::Insert (const Type &al)

{
}

r oot - >l nsert Node(new Bi nNode<Type>(val), root);

tenpl at e <cl ass Type>
B nTree<Type>: : Bi nTree (voi d)
{

}

root = 0;

tenpl at e <cl ass Type>
B nTr ee<Type>: : ~Bi nTr ee(voi d)
{

}

r oot - >Fr eeSubt r ee(root) ;

tenpl at e <cl ass Type>
voi d Bi nTree<Type>: : Del ete (const Type &val)

{
}

r oot - >Del et eNode(val , root);

tenpl at e <cl ass Type>
Bool Bi nTree<Type>:: Find (const Type &val)

{
}

return root->F ndNode(val, root) != 0;

tenpl at e <cl ass Type>
voi d Bi nTree<Type>:: Print (void)

{
root->PrintNode(root); cout << '\n';
}
9.4 #i ncl ude <i ostream h>

enum Bool { false, true };

tenpl ate <cl ass Key, class Data>
cl ass Dat abase {

publ i c:

virtual void Insert (Key key, Data data) {}

virtual void Celete (Key key) {}

virtual Bool Search (Key key, Data &dat a) {return fal se;}
b

tenpl ate <cl ass Key, class Data> cl ass Page;

www. pragsoft.com Solutions to Exercises 283

tenpl ate <cl ass Key, class Data>

class Item{ /1l represents each stored item
publ i c:
Item (voi d) {right = 0;}
Item (Key, Data);
Key& Keyf (voi d) {return key;}
Data& Datalt (void) {return data;}
Page<Key, Data>*& Subtree (void) {return right;}
friend ostrean& operator << (ostrean& Iten®);
private:

Key key; /1l items key
Dat a dat a; /1l items data
Page<Key, Data> *right; // pointer to right subtree

1
tenpl ate <cl ass Key, class Data>
cl ass Page { /1l represents each tree node
publ i c:
Page (const int size);
~Page (void) {del ete itens;}
Page* & Left (const int oflten);
Page* & R ght (const int oflten);
const int S ze (voi d) {return size;}
int& Used (voi d) {return used;}
|t enxKey, Data>& operator [] (const int n) {return itens[n];}
Bool B narySearch(Key key, int & dx);
i nt Copyltens (Page *dest, const int srcldx,
const int destldx, const int count);
Bool Insertitem (ltenxKey, Data> & tem int atldx);
Bool Celeteltem (int atldx);
voi d PrintPage (ostrean& os, const int margin);
private:
const int si ze; /1 max no. of itens per page
i nt used,; /1 no. of itens on the page
Page *left; // pointer to the | eft-nost subtree
|t enxKey, Data> *items; // the itens on the page
1

tenpl ate <cl ass Key, class Data>
class Blree : public Database<Key, Data> {

publ i c:
BTree (const int order);
~BTr ee (voi d) {FreePages(root);}
virtual void I nsert (Key key, Data data);
virtual void el ete (Key key);
virtual Bool Sear ch (Key key, Data &data);

friend ostrean& operator << (ostrean® BTree&);

pr ot ect ed:
const int order;// order of tree
Page<Key, Data> *root; // root of the tree

284 C++ Essentials Copyright © 2005 PragSoft

Page<Key, Data> *bufP, // buffer page for distribution/nerging

virtual void FreePages (Page<Key, Data> *page);

virtual ItemxKey, Data>* SearchAux (Page<Key, Data> *tree, Key key);

virtual ltemcKey, Data>*InsertAux (ltenxKey, Data> *item

Page<Key, Data> *page);

virtual void Del et eAuxl (Key key, Page<Key, Data> *page,
Bool &underflow);
virtual void Lel et eAux2 (Page<Key, Data> *parent,
Page<Key, Data> *page,
const int idx, Bool &underflow;
virtual void Underflow (Page<Key, Data> *page,
Page<Key, Data> *child,
int idx, Bool &underflow;
1

tenpl ate <cl ass Key, class Data>
ItenxKey, Data>::Item (Key k, Data d)

{
key = k;
data = d;
right = 0;
}

tenpl at e <cl ass Key, class Data>
ostrean& operator << (ostrean& os, |tenxKey, Data> & ten)

{

0s << itemkey << << itemdat a;

return os;

}

tenpl ate <cl ass Key, class Data>
Page<Key, Data>::Page (const int sz) : size(sz)
{

used = 0;

left 0;

itens = new | tenxKey, Data>[size];

}

/1 return the | eft subtree of an item

tenpl ate <cl ass Key, class Data>

Page<Key, Data>*& Page<Key, Data>::Left (const int oflten
{

}

return ofItem<=0 ? left: itens[of I[tem- 1].Subtree();

/1 return the right subtree of an item

tenpl ate <cl ass Key, class Data>
Page<Key, Data>*& Page<Key, Data>:.:R ght (const int oflten)

www. pragsoft.com Solutions to Exercises

285

{
}

return ofI'tem< 0 ? left : itens[oflten]. Subtree();
/1 do a binary search on itens of a page
/1 returns true if successful and fal se otherw se

tenpl ate <cl ass Key, class Data>
Bool Page<Key, Data>::BinarySearch (Key key, int & dx)

{
int low= 0;
int high = used - 1;
int md;
do {
md = (low+ high) / 2
if (key <= items[md].KeyCr())
high = md - 1, /] restrict to lower half
if (key >= items[md].Key(r())
low=md + 1, /1 restrict to upper half
} while (I ow <= high);
Bool found = low- high > 1,
id<x = found ? mid : high;
return found,
}

/1 copy a set of itens frompage to page

tenpl ate <cl ass Key, class Data>
i nt Page<Key, Data>::Copyltens (Page<Key, Data> *dest, const int
srcl dx,
const int destldx, const int count)

{

for (register i = 0; i <count; ++)// straight copy

dest->itens[destldx +i] = itens[srcldx + i];
return count;

}

/] insert an iteminto a page

tenpl ate <cl ass Key, class Data>
Bool Page<Key, Data>::Insertltem (ltenxKey, Data> & tem int atldx)

{
for (register i = used; i > atldx; --i) // shift right
itens[i] =itens[i - 1];
itens[atldx] =item /] insert
return ++used >= si ze; /'l overflow?
}

/1l delete an itemfroma page

286 C++ Essentials Copyright © 2005 PragSoft

tenpl ate <cl ass Key, class Data>
Bool Page<Key, Data>::Deleteltem (int atldx)

{
for (register i = atldx; i <used - 1; ++) // shift left
itens[i] =itens[i + 1];
return --used < size/2; /1 underfl ow?
}

/1 recursively print a page and its subtrees

tenpl ate <cl ass Key, class Data>
voi d Page<Key, Data>::PrintPage (ostrean& os, const int margin)

{
char nargBuf[128];

/] build the nargin string:

for (int i =0; i <= margin;, ++)
margBuf[i] ="' ';

nmargBuf[i] = '\0';

/] print the left-nost child:
if (Left(0) !=0)
Left (0)->Print Page(os, margin + 8);

/1 print page and renai ni ng children:
for (i =0; i <used; ++) {
0s << nar gBuf;
0s << (*this)[i] <<'\n';
if (Rght(i) !'=0)
R ght (i)->PrintPage(os, nargin + 8);

}

tenpl ate <cl ass Key, class Data>
BTree<Key, Data>.:BTree (const int ord) : order(ord)
{
r oot
buf P

0;
new Page<Key, Data>(2 * order + 2);

}

tenpl ate <cl ass Key, class Data>
voi d BTree<Key, Data>::Insert (Key key, Data data)

{
ItenxKey, Data> iten{key, data), *receive;
if (root == 0) { Il enpty tree
root = new Page<Key, Data>(2 * order);
root->lnsertiten{item 0);
} else if ((receive = InsertAux(& tem root)) !'=0) {
Page<Key, Data> *page = new Page<Key, Data>(2 * order); // new
r oot

www. pragsoft.com Solutions to Exercises 287

page- >l nsertlten{*receive, 0);
page->Left (0) = root;
root = page;

}

tenpl ate <cl ass Key, class Data>
voi d BTree<Key, Data>::Delete (Key key)

{
Bool underfl ow,
Lel et eAux1(key, root, underflow);
if (underflow & root->Wsed() == 0) { /1 dispose root
Page<Key, Data> *tenp = root;
root = root->Left(0);
del ete tenp;
}
}

tenpl ate <cl ass Key, class Data>
Bool BTree<Key, Data>::Search (Key key, Data &data)

{
| tenxKey, Data> *item = SearchAux(root, key);
if (item== 0)
return fal se;
data = item>Datadf ();
return true;
}

tenpl ate <cl ass Key, class Data>
ostrean& operator << (ostrean& os, BTree<Key, Data> & ree)

{
if (tree.root !'=0)
tree.root->PrintPage(os, 0);
return os;
}

/1 recursively free a page and its subtrees

tenpl ate <cl ass Key, class Data>
voi d BTree<Key, Data>::FreePages (Page<key, Data> *page)

{
if (page '= 0) {
Fr eePages(page- >Left (0));
for (register i = 0; i < page->Wsed(); ++)
Fr eePages(page->Ri ght (i));
del et e page;
}
}

/1 recursively search the tree for an itemw th mat chi ng key

288 C++ Essentials Copyright © 2005 PragSoft

tenpl ate <cl ass Key, class Data>
| tenxKey, Data>* BIree<Key, Data>::
Sear chAux (Page<Key, Data> *tree, Key key)

{
i nt i dx;
ItenxKey, Data> *item
if (tree == 0)
return O;
if (tree->BinarySearch(key, idx))
return & (*tree)[idx]);
return SearchAux(idx < 0 ? tree->Left(0)
. tree->Right (idx), key);
}

/] insert an iteminto a page and split the page if it overflows

tenpl ate <cl ass Key, class Data>
I tenxKey, Data>* BTree<Key, Data>: :lInsertAux (ltenmxKey, Data> *item
Page<Key, Data> *page)

{

Page<Key, Data> *child;

int idx;

i f (page->Bi narySearch(item>Key (), idx))
return O; /]l already in tree

if ((child = page->Rght(idx)) !'= 0)
item= InsertAux(item child); /1l childis not a |eaf

if (item!=0) { /]l page is a leaf, or passed up
if (page->Wsed() < 2 * order) { /1 insert in the page

page- >l nsertlten{*item idx + 1);

} else { /1l page is full, split
Page<Key, Data> *newP = new Page<Key, Data>(2 * order);
buf P- >Used() = page->Copyltens(buf P, 0, 0, page->Used());
buf P->I nsertlten{*item idx + 1);
int size = bufP->Used();
int hal f = sizel?2;
page- >Wsed() = buf P->Copyltens(page, 0, 0, half);
newP- >sed() = buf P->Copyltens(newP, half + 1, 0, size -

hal f - 1);

newP->Left (0) = buf P->R ght (hal f);

*item= (*bufP)[hal f]; [/l the mditem
item>Subtree() = newp;
return item

www. pragsoft.com Solutions to Exercises 289

}

return O;

}

/1 delete an itemfroma page and deal with underfl ows

tenpl ate <cl ass Key, class Data>
voi d BTree<Key, Data>::Del et eAuxl (Key key,
Page<Key, Data> *page, Bool &underfl ow)

{
i nt i dx;
Page<Key, Data> *chil d;
underfl ow = fal se;
if (page == 0)
return;
i f (page->Bi narySearch(key, idx)) {
if ((child = page->Left(idx)) == 0) { /1l page is a leaf
under f | ow = page->Del et el t en{i dx) ;
} else { /]l page is a subtree
/1 delete fromsubtree:
Del et eAux2(page, child, idx, underflow;
i f (underflow)
Underfl ow(page, child, idx - 1, underflow;
}
} else { /1 is not on this page
child = page->R ght (i dx);
Del et eAux1(key, child, underflow); /1 should be in child
i f (underflow
Under fl owpage, child, idx, underflow;
}
}

/1l delete an itemand deal with underflows by borrow ng
/1 itens from nei ghboring pages or mergi ng two pages

tenpl ate <cl ass Key, class Data>

voi d BTree<Key, Data>::Del et eAux2 (Page<Key, Data> *parent,
Page<Key, Data> *page,
const int idx, Bool &underflow

{
Page<Key, Data> *child = page->R ght (page->Wsed() - 1);
if (child!=0) { /1l page is not a |eaf
Del et eAux2(parent, child, idx, underflow); // go another |evel
down

i f (underflow)
Under f | ow(page, child, page->Used() - 1, underflow);
} else { /1 page is a |eaf
/1 save right:
Page<Key, Data> *right = parent->R ght(idx);

290 C++ Essentials Copyright © 2005 PragSoft

/1 borrow an itemfrompage for parent:

page- >Copyl t ens(parent, page->Wsed() - 1, idx, 1);
/1 restore right:

parent->R ght (i dx) = right;

under f | ow = page- >Del et el t en{ page- >Used() - 1);

}

/1 handl e underfl ows

tenpl ate <cl ass Key, class Data>

voi d BTree<Key, Data>::Underfl ow (Page<Key, Data> *page,
Page<Key, Data> *child,
int idx, Bool &underflow)

Page<Key, Data> *left =

idx < page->Wsed() - 1 ? child : page->Left(idx);
Page<Key, Data> *right =

left == child ? page->R ght(++i dx) : child;

/1 copy contents of left, parent item and right onto bufP:
int size = left->Copyltens(bufP, 0, 0, left->Used());
(*buf P)[size] = (*page)[idx];

buf P- >R ght (si ze++) = right->Left(0);

size += right->Copyltens(buf P, 0, size, right->Used());

if (size >2 * order) {
/1 distribute bufP itens between left and right:
int half = sizel2;
left->Used() = bufP->Copyltens(left, 0, O, half);
right->Used() = buf P->Copyltens(right, half + 1, 0, size - half
- 1);
right->Left(0) = buf P->R ght (hal f);
(*page)[idx] = (*buf P)[hal f];
page->Ri ght (i dx) = right;
under fl ow = fal se;
} else {
/1l nmerge, and free the right page:
| eft->Used() = bufP->Copyltens(left, 0, O, size);
under f | ow = page- >Del et el t en(i dx) ;
del ete right;

tenpl ate <cl ass Key, class Data>
class BStar : public Blree<Key, Data> {

publ i c:

BSt ar (const int order) : Blree<Key, Data>(order)
{}
virtual void I nsert (Key key, Data data);

www. pragsoft.com Solutions to Exercises 291

pr ot ect ed:
virtual ItemcKey, Data>*|nsertAux (IltenxKey, Data> *item
Page<Key, Data> *page);
virtual ItemcKey, Data>* Overflow (ItenxkKey, Data> *item
Page<Key, Data> *page,
Page<Key, Data> *child, int
idx);
1

/1 insert with overfl ow underfl ow handl i ng

tenpl ate <cl ass Key, class Data>
void BStar<Key, Data>::Insert (Key key, Data data)

{

I tenxKey, Data> iten{key, data);

| tenxkKey, Data> *overfl ow,

Page<Key, Data> *left, *right;

Bool dummy;

if (root == 0) { [l enpty tree
root = new Page<Key, Data>(2 * order);
root->lnsertliten{item 0);

} else if ((overflow = InsertAux(&tem root)) !=0) {
left = root; /1 root becores a left child
root = new Page<Key, Data>(2 * order);
ri ght = new Page<kKey, Data>(2 * order);
root->lnsertlten{*overflow O0);
root->Left (0) = left; /1l the left-most child of root
root->Right(0) =right; // the right child of root
right->Left(0) = overfl ow>Subtree();

/1 right is underflown (size == 0):
Underflow(root, right, 0, dumy);
}
}

/] inserts and deal s with overfl ows

tenpl ate <cl ass Key, class Data>
I tenxKey, Data>* BStar<Key, Data>: :lInsertAux (ltenmxKey, Data> *item
Page<Key, Data> *page)
{
Page<Key, Data> *chil d;
int idx;

i f (page->Bi narySearch(item>KeyC(f (), idx))
return O; /1l already in tree
if ((child = page->Rght(idx)) !'=0) {
/1 child not a leaf:
if ((item=InsertAux(item child)) !'=0)
return Overflowitem page, child, idx);
} else if (page->Wsed() <2 * order) { // itemfits in node

292 C++ Essentials Copyright © 2005 PragSoft

page- >l nsertlten{*item idx + 1);
} else { /1 node is full
int size = page->Used();
buf P- >Used() = page->Copyl tens(buf P, 0, 0, size);
buf P->I nsertlten{*item idx + 1);
buf P- >Copyl t ens(page, 0, 0, size);
*item= (*buf P)[size];
return item

}

return O;

}

/1 handl es underfl| owns

tenpl ate <cl ass Key, class Data>

I tenxKey, Data>* BStar<kKey, Data>: :Qverflow (ItenxkKey, Data> *item
Page<Key, Data> *page,
Page<Key, Data> *child, int idx)

{
Page<Key, Data> *left =
idx < page->Wsed() - 1 ? child : page->Left(idx);
Page<Key, Data> *right =
left == child ? page->R ght (++i dx) : child;
/1 copy left, overflown and parent itens, and right into buf:
buf P- >Used() = | eft->Copyltens(bufP, 0, 0, left->Used());
if (child=1left) {
buf P->I nsertlten{*item buf P->Used());
buf P->I nsert I ten{(*page)[i dx], bufP->Used());
buf P- >R ght (buf P->Used() - 1) = right->Left(0);
buf P- >Used() +=
right->Copyl tens(buf P, 0, buf P->Used(), right->Used());
} else {
buf P->I nsert I ten{(*page) [i dx], bufP->Used());
buf P- >R ght (buf P->Used() - 1) = right->Left(0);
buf P- >sed() +=
right->Copyl tens(buf P, 0, bufP->Used(), right->Used());
buf P->I nsertlten{*item buf P->Used());
}
if (buf P->Used() <4 * order + 2) {
/1 distribute buf between left and right:
int size = bufP->Used(), half;
| eft->Used() = bufP->Copyltens(left, 0, O, half = sizel2);
right->Used() = buf P->Copyltens(right, half + 1, 0, size - half
- 1);

right->Left(0) = buf P->Ri ght(hal f);
(*page)[idx] = (*buf P)[hal f];
page->Ri ght (i dx) = right;
return O;

} else {
[l split int 3 pages:

www. pragsoft.com Solutions to Exercises 293

Page<Key, Data> *newP = new Page<Key, Data>(2 * order);
int ndl, md2;

mdl = left->Wsed() = buf P->Copyltens(left, 0, O, (4 * order +
1) / 3);

md2 = right->Used() = buf P->Copyltens(right, mdl + 1, 0, 4 *
order / 3);

md2 += mdl + 1;
newP- >Used() = buf P->Copyltens(newP, md2 + 1, 0, (4 * order +
2) I 3);

right->Left(0) = buf P->R ght(mdl);

buf P->R ght (mdl) = right;

newP->Left (0) = buf P->R ght (n d2);

buf P- >R ght (m d2) = newp,

(*page)[idx] = (*buf P)[md2];

if (page->Wsed() < 2 * order) {
page- >l nsertlten((*buf P)[mdl], idx);
return O;

} else {
*item= (*page)[page- >Used() - 1];
(*page) [page->Used() - 1] = (*buf P)[mdi];
return item

}

10.1 enum PType {control Pack, dataPack, di agnosePack};
enum Bool {fal se, true};

cl ass Packet {

publ i c:
/...
PType Type (void) {return dataPack;}
Bool Valid (void) {return true;}
b
class Gonnection {
publ i c:
/...
Bool Active (void) {return true;}
b

class InactiveConn {};
class InvalidPack {};
class WnknownPack {};

voi d Recei vePacket (Packet *pack, Connection *c)
throw(I nactiveConn, InvalidPack, UnknownPack)
{
if (!c->Active())
throw I nactiveConn();
if (!pack->Valid())

294 C++ Essentials Copyright © 2005 PragSoft

throw I nval i dPack();

switch (pack->Type()) {

case control Pack: /...
br eak;
case dat aPack: /...
br eak;
case di agnosePack: //...
br eak;
defaul t: /...
t hr ow UnknownPack() ;
}
}
10.2 #i ncl ude <i ostream h>
class D nsDont Match {};
cl ass BadD ns {};
cl ass BadRow {};
cl ass BadCol {};
cl ass HeapExhausted {};
class Matrix {
publ i c:
Matri x (const short rows, const short cols);
Matri x (const Matrix&);
~Mat ri x (voi d) {del ete el ens;}
doubl e& operator () (const short row, const short col);
Matrix& operator = (const Matrix&);

friend ostrean& operator << (ostrean® Matrix&);
friend Matrix operator + (Matrix& Mtrix&);

friend Matrix operator - (Matrix& Mtrix&;
friend Matrix operator * (Matrix& Mtrix&);
const short Rows (voi d) {return rows;}
const short Qols (voi d) {return col s;}
private:
const short rows; /] natrix rows
const short cols; /1l natrix col ums
doubl e *el ens; [/l natrix elenents
h

Matrix::Mtrix (const short r, const short c) : rows(r), cols(c)

{
if (rows <=0 || cols <= 0)
t hrow BadD ns();
el ens = new doubl e[rows * col s];
if (elens == 0)
t hr ow HeapExhaust ed() ;
}

www. pragsoft.com Solutions to Exercises 295

Matrix::Matrix (const Matrix &) : rows(mrows), cols(mcols)

{
int n=rows * cols;
if (rows <=0 || cols <=0)
t hrow BadD ns();
el ens = new doubl e[n];
if (elens == 0)
t hr ow HeapExhaust ed() ;
for (register i =0; i <n; ++i) /1 copy el erments
elens[i] = melens[i];
}
doubl e& Matrix::operator () (const short row, const short col)
{
if (row<=0]| row> rows)
t hr ow BadRow() ;
if (col <=0]| col > cols)
t hrow BadCol ();
return elens[(row - 1)*cols + (col - 1)];
}
Matrix& Matrix::operator = (const Matrix &m
{
if (rows == mrows & cols == mcols) { /1l nust match
int n=rows * cols;
for (register i =0; i <n; ++) /1 copy el ements
elens[i] = melens[i];
} else
t hrow D nmsDont Mat ch() ;
return *this;
}
ostrean& operator << (ostream &s, Matrix &
{
for (register r =1, r <= mrows; ++) {
for (int ¢ =1, ¢ <= mcols; ++c)
0S << m(r,c) << '\t';
0s << '\n';
}
return os;
}
Matrix operator + (Matrix &, Matrix &Qq)
{
if (p.rows !=qg.rows || p.cols != q.cols)

t hrow D nmsDont Mat ch() ;
Matrix n{p.rows, p.cols);
if (p.rows == g.rows & p.cols == q.col s)
for (register r =1, r <= p.rows; ++r)
for (register ¢ =1, ¢ <= p.cols; ++c)
n{r,c) =p(r,c) +q(r,c);

296 C++ Essentials Copyright © 2005 PragSoft

return m

}
Matrix operator - (Matrix &, Matrix &Qq)
{
if (p.rows !=qg.rows || p.cols != q.cols)
t hrow D nmsDont Mat ch() ;
Matrix n{p.rows, p.cols);
if (p.rows == g.rows & p.cols == q.col s)
for (register r =1, r <= p.rows; ++r)
for (register ¢ =1, ¢ <= p.cols; ++c)
n{r,c) =np(r,c) - q(r,c);
return m
}
Matrix operator * (Matrix &, Matrix &Qq)
{
if (p.cols = q.rows)
t hrow D nmsDont Mat ch() ;
Matrix n{p.rows, qg.cols);
if (p.cols == q.rows)
for (register r =1, r <= p.rows; ++r)
for (register c =1, ¢ <=q.cols; ++) {
n(r,c) =0.0;
for (register i =1; i <=p.cols; ++)
n{r,c) +=p(r,c) * q(r,c);
}
return m
}

www. pragsoft.com Solutions to Exercises 297

