Tcl/Tk Engineering M anual

John K. Ousterhout

Sun Microsystems, Inc.
john.ousterhout@eng.sun.com

1. Introduction

This is a manual for people who are developing C codecipiTk, and their extensions and
applications. It describes a set of conventions for writing code and the associated test scripts.
There are two reasons for the conventions. First, the conventions ensure that certain important
things get done; for example, every procedure must have documentation that describes each of
its aguments and its result, and there must exist test scripts that exercise every line of code.
Second, the conventions guarantee that all of ¢harid Tk code has a uniform style. This

makes it easier for us to use, read, and maintain eachsotbele.

Most of the conventions originated in the Sprite operating system project at U.C. Berke-
ley. At the beginning of the Sprite project my students and | decided that we wanted a uniform
style for our code and documentation, so we held a series of meetings to choose the rules. The
result of these meetings was a document cdlfedSprite Engineering Manual. None of us
was completely happy with all the rules, but we all managed to live by them during the project
and | think everyone was happy with the results. When | started wordl and Tk, | decided
to stick with the Sprite conventions. This document is based heavilyedprite Engineering
Manual.

There are few things that | consider non-negotiable, but the contents of this manual are
one of them. | don’claim that these conventions are the best possible ones, but the exact con-
ventions dort'really make that much dérence. The most important thing is that we all do
things the same wagiven that the corecTand Tk code follows the conventions, changing
the rules now would cause more harm than good.

Please write your code so that it conforms to the conventions from the very start. For
example, dor’'write comment-free code on the assumption that you'll go back and put the
comments in later once the code is working. This simply tWwappen. Regardless of how
good your intentions are, when it comes time to go back and put in the comments you'll find
that you have a dozen more important things to do; as the body of uncommented code builds
up, it will be harder and harder to work up the gpdo go back and fix it all. One of the fun-
damental rules of software is that its structure only gets worse over time; if yaunditohit
right to begin with, it will never get that way lat¥vhen | write code | typically write the pro-
cedure headers for a whole file before I fill in any of the bodies.

The rest of this document consists of 8 major parts. Seztitiscusses the overall struc-
ture of a package and how t@anize header files. Secti8rdescribes the structure of a C
code file and how to write procedure headers. Sedtaesribes thecl/Tk naming conven-
tions. Sectiorb presents low-level coding conventions, such as how to indent and where to put
curly braces. Sectiof contains a collection of rules and suggestions for writing comments.
Section7 describes how to write and maintain test suites. SeRtilescribes how to make

Tcl/Tk Engineering Manual September 1, 1994 1



code portable without making it unreadable too. Section 9 contains a few miscellaneous topics,
such as keeping a change log.

2. Packages and header files

Tcl applications consist of collections pdickagesEach package provides code to implement

a related set of features. For examptd,ifelf is a package, as is Tk; various extensions such

as Tl-DP, TcIX, Expect, and BT are also packages. Packages are the units in which code is
developed and distributed: a single package is typically developed by a single person or group
and distributed as a unit. One of the best things almbig That it is possible to combine many
independently-developed packages into a single application; packages should be designed with
this in mind. This section describes the file structure of packages with an emphasis on header
files; later sections discuss conventions for code files.nvay also wish to review Chapter 31

of the Tl book for additional information on packages, such as how to interface them to the
rest of an application.

2.1 Package prefixes

Each package has a unique sipoefix The prefix is used in file names, procedure names, and
variable names in order to prevent name conflicts with other packages. For example, the prefix
for Tclist cl ; Tcl's exported header file is called! . h and exported procedures and vari-

ables have names likeel _Eval .

2.2 Version numbers

Each package has a two-part version number such as 7.4. The first number (7) is called the
major version number and the second (4) is called the minor version ndinéeersion num-

ber changes with each public release of the package. If a new release contains only bug fixes,
new features, and other upwardly compatible changes, so that code and scripts that worked
with the old version will also work with the new version, then the minor version number incre-
ments and the major version number stays the same (e.g., from 7.4 to 7.5). If the new release
contains substantial incompatibilities, so that existing code and scripts will have to be modified
to run with the new version, then the major version number increments and the minor version
number resets to zero (e.g., from 7.4 to 8.0).

2.3 Overall structure

A package typically consists of several code files, plus at least two header files, plus additional

files for building and configuring the package, sucheskef i | e and aconfi gure.in

file for theaut oconf program. The header files for a package generally fall into the follow-

ing categories:

* A package header filavhich is named after the package, suchds h ort k. h. This
header file describes all of the externally-visible features of the package, such as procedures,
global variables, and structure declarations. The package header file is eventually installed
in a system directory such assr /| ocal /i ncl ude; it is what clients of the package
#i ncl ude in their C code. As a general rule of thumb, the package header file should
define as few things as possibles itery hard to change an exported feature since it breaks
client code that uses the package, so the less you export, the easier it will be to make
changes to the package. Thus, for example, try not to make the internal fields of structures
visible in package header files.

* Aninternal header filewhich is typically#i ncl uded by all of the C files in the package.
The internal header file has a name tiké | nt . h ort kI nt . h, consisting of the the
package prefix followed blynt . h. The internal header file describes features that are used
in multiple files within the package but are@kported out of the package. For example, key

Tcl/Tk Engineering Manual September 1, 1994 2



package structures and internal utility procedures are defined in the internal header file. The
internal header file should also cont#imc| udes for other headers that are used widely
within the package, so they dohave to be included over and over in each code file. As

with the package headehe internal header file should be as small as possible: structures
and procedures that are only used in a single C file in the package should not appear in it.

* A porting header filewhich contains definitions that hide thefeliénces between the sys-
tems on which the package can be used.The name of the porting header should consist of the
package prefix follwed bipor t . h, such a$ cl Port . h.

¢ Other internal header files for various subpackages within the package. For example, there
is a filet kText . h in Tk that is shared among all the files that implement text widgets and
another file& kCanvas. h that is shared among all the widgets implementing canvases.

| recommend having as few header files as possible in each package. In almost all cases a pack-
age header file, a single internal header file, and a porting header file wilfitierstyiand in

many cases the porting header file may not be nece$sarynternal header file should auto-
matically#i ncl ude the package header file and perhaps even the porting header file, so each
C file in the package only needsttioncl ude one or at most two header files. | recommend
keeping the porting header separate from the internal header file in order to maintain a clean
separation between porting code and the rest of the module. Other internal headers should only
be necessary in unusual cases, such as the Tk text and canvas widgetd (e@ektof h and

t kCanvas. h is many hundred lines long, due to the complexity of the widgets, and they are
needed only in the source files that implement the particular widgets, so | thought it would be
easier to manage these headers separatelyt fkdmt . h). If you have lots of internal header

files, such as one for each source file, then you will end up with lgtsnafl ude statements

in each C file and you'll find that either (a) y#uncl ude every header in every C file (in

which case there’not much advantage to having the separatfiles) or (b) you are con-

stantly adding and deletid§ ncl ude statements as you modify source files.

2.4 Header file structure

Figurel illustrates the format of a header fil@uY header files should follow this structure
exactly: same indentation, same order of information, and saanake this as easy as possi-
ble, the directorgngManual in the Tl source tree contains templates for various pieces of
source files. For example, the fileot 0. h contains a template for a header file; there are also
templates for code files and procedure headens skould be able to set up your editor to
incorporate the templates when needed, then you can modify them for the particular situation
in which they are used. This should make it easy for you to conform to the conventions without
a lot of typing overhead.

Each header file contains the following parts, which are labelled in Figure

Abstract: the first few lines give the name of the file plus a short description of its overall
purpose.

Copyright notice: this protects the ownership of the file and controls distributioferdiit
notices may be used onfeifent files, depending on whether the file is to be released freely
or restricted. The wording in copyright notices is sensitive (e.g. the use of upper case is
important) so don’make changes in notices without checking with a legal authority

Revision string: the contents of this string are managed automatically by the source code
control system for the file, such as RCS or SCCS (RCS is used in the example in the figure).
It identifies the files current revision, date of last modification, and so on.

Multipleinclude#ifdef: when a lage application is developed with many related packages,
it is hard to arrange th& ncl ude statements so that each include file is included exactly
once For example, files h andb. h might both include. h, and a particular code file
might include botta. h andb. h. This will causec. h to be processed twice, and could
potentially result in compiler errors such as multiply-defined symbath. té recursion

#i f def , plus the matchingendi f at the end of the file, the header file can be

Tcl/Tk Engineering Manual September 1, 1994 3



Abstract

Copyright

Revision
String

Multiple
Include
#ifdef

Version
Defines

Structure
Declaration

Variable
Declaration

Procedure
Prototype

Multiple
Include
#endif

tcl.h --

This header file describes the externally-visible facilities
of the Tcl interpreter.

Copyright (c) 1987-1994 The Regents of the University of California.
Al'l rights reserved.

Perm ssion is hereby granted, w thout witten agreement and without
license or royalty fees, to use, copy, nodify, and distribute this
software and its docunentation for any purpose, provided that the
above copyright notice and the foll ow ng two paragraphs appear in
all copies of this software.

IN NO EVENT SHALL THE UNI VERSI TY OF CALI FORNI A BE LI ABLE TO ANY PARTY FOR
DI RECT, | NDI RECT, SPECI AL, | NClI DENTAL, OR CONSEQUENTI AL DAMAGES ARI SI NG OQUT
OF THE USE OF THI S SOFTWARE AND | TS DOCUMENTATI ON, EVEN | F THE UNI VERSI TY OF
CALI FORNI A HAS BEEN ADVI SED OF THE PCSSI BI LI TY OF SUCH DAMAGE.

THE UNI VERSI TY OF CALI FORNI A SPECI FI CALLY DI SCLAI M5 ANY WARRANTI ES,

I NCLUDI NG, BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY
AND FI TNESS FOR A PARTI CULAR PURPCSE. THE SOFTWARE PROVI DED HEREUNDER | S
ON AN "AS | S" BASIS, AND THE UNI VERSI TY OF CALI FORNI A HAS NO OBLI GATI ON TC
PROVI DE MAI NTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI FI CATI ONS.

R T R R .

[ * $Header: /user6/ouster/tcl/RCS/tcl.h,v 1.139 94/05/26 14: 40: 43 ouster Exp $
PRI TE ( Ber kel ey)
Y

[ #i f ndef _TCL
| #define _TCL

[ #define TCL_VERSION "7. 4"
#define TCL_MAJOR VERSI ON 7
| #define TCL_M NOR_VERSI ON 4

e
* The structure returned by Tcl _Get Cndl nfo and passed into
* Tcl _Set Cdl nf o:
*/

t ypedef struct Tcl _Cmdlnfo {

Tcl _CndProc *proc; /* Procedure that inplenents command. */
ClientData clientDat a; /* dientData passed to proc. */

Tcl _CndDel et eProc *del et eProc; /* Procedure to call when commuand

* is deleted. */
ClientData del eteDat a; /* Value to pass to deleteProc (usually
* the sane as clientData). */
} Tcl _Cmdl nfo;

[ EXTERN i nt tcl _AsyncReady;

|: EXTERN i nt Tcl _Eval _ANSI _ARGS ((Tcl _Interp *interp, char *cmd));

[ #endif /* _TCL */

Figure 1. An example of a header file. The #lagManual / pr ot 0. h contains a template for
header files.

Tcl/Tk Engineering Manual September 1, 1994 4



#i ncl uded multiple times without problems. The symbdICL is defined the first time

the header file is included; if the header is included again the presence of the symbol causes
the body of the header file to be skipped. The symbol used in any given header file should be
the same as the name of the header file except witthtls&ripped of, a_ prepended, and
everything else capitalized.

Version definesfor each package, three symbols related to the current version number
should be defined. The first gives the full version number as a string, and the second and
third give the major and minor numbers separately as integers. The names for these symbols
should be derived from the package prefix as in Figjure

Declarations the rest of the header file consists of declarations for the things that are
exported from the package to its clients. Most of the conventions for coding these declara-
tions will be discussed latéVhen declaring variables and procedures EX§eERN instead

of ext er n to declare them external. The symBXITERN can then bé&def i ned to either
externorextern "C' to allow the header file to be used in both C and C++ programs.
The header filé cl . h contains code té#def i ne theEXTERN symbol; if your header file
doesnt #i ncl ude t cl . h, you can copy the code frone! . h to your header file.

2.5 _ANSI_ARGS_ prototypes

Procedure prototypes should use th&NSI _ ARGS macro as shown in Figufie
_ANSI _ARGS_makes it possible to write full procedure prototypes for the normal case where
an ANSI C compiler will be used, yet it also allows the file to be used with older non-ANSI
compilers. ® use ANSI _ARGS , specify the entire gument list, including parentheses, as
an agument to the ANSI _ ARGS_ macro;_ANSI _ARGS _ will evaluate to either this guo-
ment list or( ) , depending on whether or not an ANSI C compiler is being used. The
_ANSI _ARGS_macro is defined ihcl . h.

In the agument lists in procedure prototypes, be sure to specify names fogtinecsuts
as well as their types. The names aregrjuired for compilation (for example, the declaration
for Tcl _Eval could have been written as

EXTERN i nt Tcl _Eval _ANSI _ARGS ((Tcl _Interp *, char *));
in Figurel) but the names provide additional information about theraents.

3. How to organize a code file

Each source code file should contain a related set of procedures, such as the implementation of
a widget or canvas item type, or a set of procedures to implement hash tables. Before writing
any code you should think carefully about what functions are to be provided and divide them
up into files in a logical wayn my experience, the most manageable size for files is usually in
the range of 500-2000 lines. If a file gets muchdathan this, it will be hard to remember
everything that the file does. If a file is much shorter than this, then you may end up with too
many files in a directoryhich is also hard to manage.

Code files are divided into pages separated by formfeed (control-L) characters. The first
page of the file is a header page containing information that is used throughout the file. Each
additional page of the file contains one procedure. This approach has two advantages. First,
when you print a code file each procedure header will start at the top of the page, which makes
for easier reading. Second, you can browse through all of the procedures in a file by searching
for the formfeed characters.

3.1 The file header page

The first page of a code file idveader page. It contains overall information that is relevant
throughout the file, which consists of everything but the definitions of the filetedures.
The header page typically has six parts, as shown in RXgure

Tcl/Tk Engineering Manual September 1, 1994 5



Abstract

Copyright

Revision
String

L I R T S R S SRR R R N N

~

[ st

tclLink.c --

This file inplenments linked variables (a C variable that is
tied to a Tcl variable). The idea of |inked variables was
first suggested by Andreas Stolcke and this inplenentation is
based heavily on a prototype inplenentation provi ded by

hi m

Copyright (c) 1993 The Regents of the University of California.
Al'l rights reserved.

Perm ssion is hereby granted, w thout witten agreement and without
license or royalty fees, to use, copy, nodify, and distribute this
software and its docunmentation for any purpose, provided that the
above copyright notice and the follow ng two paragraphs appear in
all copies of this software.

atic char rcsid[] = "$Header: /user6/ouster/tcl/RCS/tclLink.c,v 1.5 94/04/23

16:12: 30 ouster Exp $ SPRI TE (Berkel ey)";

Includes I:#i nclude "tclint.h"

Declarations

Prototypes

_/*
*
*
*

*

For each linked variable there is a data structure of the foll ow ng
type, which describes the Iink and is the clientData for the trace
set on the Tcl variable.

/

typedef struct Link {

L}
.

*

st

st

Tcl _Interp *interp; /* Interpreter containing Tcl variable. */
char *addr; /* Location of Cvariable. */
int type; /* Type of link (TCL_LINK_INT, etc.). */
int witable; /* Zero neans Tcl variable is read-only. */
uni on {

int i;

doubl e d;
} | astVal ue; /* Last known value of C variable; wused to

* avoid string conversions. */
Li nk;

Prototypes for procedures referenced only in this file:
*/

atic char * Li nkTraceProc _ANSI _ARGS ((CdientData clientData,
Tcl _Interp *interp, char *nanmel, char *nanme2,
int flags));

atic char * StringVal ue _ANSI _ARGS ((Link *lIinkPtr,

char *buffer));

Figure 2. An example of a header page. Part of the text of the copyright notice has been
omitted. The fileengManual / pr ot 0. ¢ contains a template for a header page.

Abstract: the first few lines give the name of the file and a brief description of the overall
functions provided by the file, just as in header files.

Copyright notice: protects ownership of the file, just as in header files.

Revision string: similar to the revision strings in header files, except that its value is used to
initialize a string variable. This allows the revision information to be checked in the execut-
able object file.

Include statements: all of the#i ncl ude statements for the file should appear on the
header file just after the version string. In general there should be vety fext ude
statements in a given code file, typically just for the packagtrnal header file and port-

Tcl/Tk Engineering Manual September 1, 1994 6



E I I A

Tcl _Getlnt --

G ven a string, produce the corresponding integer val ue.

Resul ts:
* The return value is nornmally TCL_OK; in this case *intPtr
* will be set to the integer value equivalent to string. |If
* string is inproperly formed then TCL_ERROR i s returned and
* an error nessage will be left in interp->result.
*
* Side effects:
* None.
*
K o e e o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e .-
*/
int

Tcl _GetlInt(interp, string, intPtr
Tcl _Interp *interp; /
char *string; /

int

3.2

)
* Interpreter to use for error reporting. */
* String containing a (possibly signed)

* integer in a formacceptable to strtol. */
*IintPtr; /* Place to store converted result. */

Figure 3. The header comments and declaration for a procedure. The file
engManual / pr ochead contains a template for this information.

ing header file. If additionati ncl udes are needed they should appear in the package’
internal header file or porting header file.

Declarations: any structures used only in this file should be declared on the header page
(exported structures must be declared in header files). In addition, if the file defines any
static or global variables then they should be declared on the header page. This makes it
easy to tell whether or not a file has static variables, which is important if the file is ever
used in a multi-threaded environment. Static variables are generally undesirable and should
be avoided as much as possible.

Prototypes: procedure prototypes for procedures referenced only in this file should appear
at the very end of the header page (prototypes for exported procedures must appear in the
package header file). Use the _ANSI_ARGS_ macro described in S2&ion

Please structure your header pages in exactly the order given above and follow the syntax of
Figure?2 as closely as possible. The fllegManual / pr ot 0. ¢ provides a template for a
header page.

Source files should never contairt er n statements. Instead, create header files to hold
theext er n statements angi ncl ude the header files. This makes code files easier to read
and makes it easier to managedhe er n statements, since they're centralized infiles
instead of spread around dozens of code files. For example, the internal header file for a pack-
age hagxt er n statements for all of the procedures that are used by multiple files within the
package but arenéxported outside it.

Procedure headers

Each page after the first one in a file should contain exactly one procedure. The page should
begin with gprocedure header that gives overall documentation for the procedure, followed by
the declaration and body for the procedure. See Figures 3 and 4 for examples. The header
should contain everything that a caller of the procedure needs to know in order to use the pro-
cedure, and nothing else. It consists of three parts:

Tcl/Tk Engineering Manual September 1, 1994 7



-~
*

ScaleBitmap --

This procedure is invoked to rescale a bitmap item in a
canvas. lItis one of the standard item procedures for
bitmap items, and is invoked by the generic canvas code,
for example during the "scale" widget command.

Results:
None.

Side effects:
The item referred to by itemPtr is rescaled so that the
following transformation is applied to all point coordinates:
X' = originX + scaleX*(x-originX)
y' = originY + scaleY*(y-originY)

E I I S A T R R I R I B

*
~

static void

ScaleBitmap(canvasPtr, itemPtr, originX, originY, scaleX, scaleY)
Tk_Canvas *canvasPtr; /* Canvas containing rectangle. */
Tk_Item *itemPtr; /* Rectangle to be scaled. */
double originX, originY; [* Origin about which to scale rect. */
double scaleX; I* Amount to scale in X direction. */
double scaleY; /* Amount to scale in Y direction. */

{

}

Figure 4. The header for a procedure with sidieetfs.

Abstract: the first lines in the header give the proceduneme, followed by a brief

description of what the procedure does. This should not be a detailed description of how the
procedure is implemented, but rather a high-level summary of its overall function. In some
cases, such as callback procedures, | recommend also describing the conditions under which
the procedure is invoked and who calls the procedure, as in Bigure

Results: this portion of the header describes describes how the procefihats #fings that

are immediately visible to its callérhis includes the return value of the procedure and any
modifications made to the callswvariables via pointer guments, such astPtr  in

Figure3.

Side Effects: the last part of the header describes changes the procedure makes to its inter-
nal state, which may not be immediately visible to the caller but éit&later calls to this

or other procedures. This section should not describe every internal variable modified by the
procedure. It should simply provide the sort of information that users of the procedure need
in order to use the procedure correcBge Figurd for an example.

The fileengManual/prochead  contains a template for a procedure heagbich you can
include from your editor to save typing. Follow the syntax of Figures 3 and 4 exactly (same
indentation, double-dash after the procedure name, etc.).

3.3 Procedure declarations

The procedure declaration should also follow exactly the syntax in Figures 3 and 4. The first
line gives the type of the procedwgeésult. All procedures must be typed: waiel if the pro-
cedure returns no result. The second line gives the procedarae and its gnment list. If

there are many guments, they may spill onto additional lines (see Sections 5.1 and 5.5 for
information about indentation). After this come the declarationsgoinaent types, one gu-

ment per line, indented, with a comment after eaghraent giving a brief description of the

Tcl/Tk Engineering Manual September 1, 1994 8



argument. Every gument must be explicitly declared, and eveguarent must have a com-
ment.

This form for agument declarations is the old form that predates ANSIOniportant to
use the old form so that your code will compile on older pre-ANSI compilers. Hopefully there
arent too many of these compilers left, and perhaps in a few years we can switch to the ANSI
form, but for now let be safe. Every procedure should also have an ANSI-style prototype
either on the files header page or in a header file, so this approach still allowsgiuthant
checking.

3.4 Parameter order

Procedure parameters may be divided into three catedorigarameters only pass informa-

tion into the procedure (either directly or by pointing to information that the procedure reads).
Out parameters point to things in the cdblememory that the procedure modifiesout

parameters do both. Below is a set of rules for deciding on the order of parameters to a proce-
dure:

1. Parameters should normally appear in the order in, in/out, out, except where overridden by
the rules below

2. If there is a group of procedures, all of which operate on structures of a particular type, such
as a hash table, the token for the structure should be thedirstemt to each of the proce-
dures.

3. When two parameters are the address of a callback procedur€andra Dat a value to
pass to that procedure, the procedure address should appeargutheradist immediately
before theCl i ent Dat a.

4. If a callback procedure take<Chi ent Dat a agument (and all callbacks should), the
d i ent Dat a agument should be the firstgament to the procedureyfically theCl i -
ent Dat a is a pointer to the structure managed by the callback, so this is really the same as
rule 2.

3.5 Procedure bodies

The body of a procedure follows the declaration. See Seefimnthe coding conventions that
govern procedure bodies. The curly braces enclosing the body should be on separate lines as
shown in Figures 3 and 4.

4. Naming conventions

Choosing names is one of the most important aspects of programming. Good names clarify the
function of a program and reduce the need for other documentation. Poor names result in ambi-
guity, confusion, and erroFor example, in the Sprite operating system we spent four months
tracking down a subtle problem with the file system that caused seemingly random blocks on
disk to be overwritten from time to time. It turned out that the same variable name was used in
some places to refer to physical blocks on disk, and in other places to logical blocks in a file;
unfortunatelyin one place the variable was accidentally used for the wrong purpose. The bug
probably would not have occurred ifféifent variable names had been used for the two kinds
of block identifiers.

This section gives some general principles to follow when choosing names, then lists spe-
cific rules for name syntax, such as capitalization, and finally describes how to use package
prefixes to clarify the module structure of your code.

Tcl/Tk Engineering Manual September 1, 1994 9



4.1 General considerations

The ideal variable name is one that instantly conveys as much information as possible about
the purpose of the variable it refers to. When choosing names, plag delviticate with your-

self to see if there are ways that a name might be misinterpreted or confused. Here are some
things to consider:

1. Are you consistent? Use the same name to refer to the same thing everywhere. For example,
in the Tcl implementation the nament er p is used consistently for pointers to the user
visible Tcl _I nt er p structure. ithin the code for each widget, a standard name is always
used for a pointer to the widget record, suchuwsPt r in the button widget code and
menuPt r in the menu widget code.

2. If someone sees the name out of context, will they realize what it standsdould they
confuse it with something else? For example, in Sprite the procedure for doing byte-swap-
ping and other format conversion was originally caeaép_Buf f er. When | first saw
that name | assumed it had something to do with I/@bufanagement, not reformatting.

We subsequently changed the namertb_Convert .

3. Could this name be confused with some other name? For exansgheoiably a mistake to
have two variables andst r i ng in the same procedure, both referring to strings: it will be
hard for anyone to remember which is which. Instead, change the names to reflect their
functions. For example, if the strings are used as source and destination for a copy opera-
tion, name thersr ¢ anddst .

4. Is the name so generic that it doés@nvey any information? The varialddrom the pre-
vious paragraph is an example of this; changing its namiedanakes the name less
generic and hence conveys more information.

4.2 Basic syntax rules

Below are some specific rules governing the syntax of names. Please follow the rules exactly
since they make it possible to determine certain properties of a variable just from its name.

1. Variable names always start with a lowase letterProcedure and type names always start

with an uppeicase letter
int counter;
extern char *Fi ndEl enent ();
typedef int Bool ean;

2. In multi-word names, the first letter of each trailing word is capitalized. Do not use under-
scores as separators between the words of a name, except as described in rule 5 below and in
Sectior4.3.

int numA ndows;

3. Any name that refers to a pointer end®in . If the name refers to a pointer to a pointer
then it ends ifPt r Pt r, and so on. There are two exceptions to this rule. The first is for vari-
ables that are opaque handles for structures, such as variablesT tyfiendow. These
variables are actually pointers, but they are never dereferenced outside Tk (clients can never
look at the structure they point to except by invoking Tk macros and procedures). In this
case thé?t r is omitted in variable names. The second exception to the rule is for strings.
We decided in Sprite not to requiPer sufixes for strings, since they are always refer-
enced with pointers. Howeyef a variable holds a pointer to a string pointeen it must
have thePt r sufix (theres just one less level &t r for strings than for other structures).

TkW ndow *wi nPtr;
char *nane;
char **namePtr;

4. Variables that hold the addresses of procedures should have names eRdiog. in

t ypedef s for these variables should also have names endifgdo.

typedef void (Tk_l mageDel eteProc)(ClientData clientData);
Tk_I mageDel et eProc *del et ePr oc;

Tcl/Tk Engineering Manual September 1, 1994 10



5. #def i ned constants and macros have names that are all capital letters, except for macros
that are used as replacements for procedures, in which case you should follow the naming
conventions for procedures. If names in all caps contain multiple words, use underscores to
separate the words.

#define NULL O
#defi ne BUFFER_SI ZE 1024
#define Mn(a,b) (((a) < (b)) ? (a) : (b))

6. Names of programs,clfcommands, and keywordgaiments to @ commands (such as Tk
configuration options) are usually entirely in lower case, in spite of the rules above. The rea-
son for this rule is that these names are likely to typed interactaredyl thought that using
all lower case would make it easier to type them. In retrospect I'm not sure this was a good
idea; in any case cTprocedure and variable names should follow the same rules as C pro-
cedures and variables.

4.3 Names reflect package structure

Names that are exported outside a single file must include the package prefix in order to make
sure that they dontonflict with global names defined in other packages. The following rules
define how to use package prefixes in names:

1. If a variable or procedure or type is exported by its package, the first letters of its name must
consist of the package prefix followed by an underscore. Only the first letter of the prefix is
ever capitalized, and it is subject to the capitalization rules from SdcHofhe first letter
after the prefix is always capitalized. The first example below shows an exported variable,
and the second shows an exported type and exported procedure.

extern int tk_numVai nW ndows;
extern Tcl _Interp *Tcl _Createl nterp(void);

2. If amodule contains several files, and if a name is used in several of those fileg beetsn’
outside the package, then the name must have the package prefix but no underscore. The
prefix guarantees that the name wwa@onflict with a similar name from a &fent package;
the missing underscore indicates that the name is private to the package.

extern void TkEvent DeadW ndow TkW ndow *wi nPtr);

3. If a name is only used within a single procedure or file, then it need not have the module
prefix. To avoid conflicts with similar names in other files, variables and procedures
declared outside procedures must always be dedaradi c if they have no module pre-
fix.

static int initialized;

4.4 Standard names

The following variable names are used consistently througlwbain@ Tk. Please use these
names for the given purposes in any code you write, and ukethe names for other pur-
poses.

clientData Used for variables of typ@ i ent Dat a, which are associ-
ated with callback procedures.

interp Used for variables of typEcl _I nt er p: these are the
(mostly) opaque handles for interpreters that are givenlto T
clients. These variables should really haw a extension,
but the name was chosen at a time when interpreters were
totally opaque to clients.

i Ptr Used for variables of typent er p *, which are pointers to
Tcl's internal structures for interpreters! procedures often
have an grument namednt er p, which is copied into a
local variable namedPt r in order to access the contents of
the interpreter

Tcl/Tk Engineering Manual September 1, 1994 11



next Ptr A field with this name is used in structures to point to the next
structure in a linked list. This is usally the last field of the

structure.

tkwin Used for variables of typEk_W ndow; which are opaque
handles for the window structures managed by Tk.

Wi nPtr Used for variables of typekW ndow *, which are pointers

to Tk’s internal structures for windows. Tk procedures often
take an agument nametdkwi n and immediately copy the
argument into a local variable namenPt r in order to
access the contents of the window structure.

5. Low-level coding conventions

This section describes several low-level syntactic rules for writing C code. The reason for hav-
ing these rules is not because they're better than all other ways of structuring code, but in order
to make all our code look the same.

5.1 Indents are 4 spaces

Each level of indentation should be four spaces. There are ways to set 4-space indents in all
editors that | know of. Be sure that your editor really uses four spaces for the indent, rather
than just displaying tabs as four spaces wide; if you use the latter approach then the indents
will appear eight spaces wide in other editors.

5.2 Code comments occupy full lines

Comments that document code (as opposed to declarations) should occupy full lines, rather
than being tacked onto the ends of lines containing code. The reason for this is that side-by-
side comments are hard to see, particularly if neighboring statements are long enough to over-
lap the side-by-side comments. Comments must have exactly the structure shown i8,Figure
including a leading * line, a trailing*/ line, and additional blank lines above and belbke

leading blank line can be omitted if the comment is at the beginning of a block, as is the case in
the second comment in FiguseEach comment should be indented to the same level as the
surrounding code. Use proper English in comments: write complete sentences, capitalize the
first word of each sentence, and so on.

5.3 Declaration comments are side-by-side

When documenting theguments for procedures and the members of structures, place the
comments on the same lines as the declarations. Figures 3 and 4 show comments for procedure
arguments and Figur@ shows a simple structure declaration. The format for comments is the
same in both cases. Place the comments to the right of the declarations, with all the left edges
of all the comments lined up. When a comment requires more than one line, indent the addi-
tional lines to the same level as the first line, with the closingn the same line as the end of

the text. For structure declarations it is usually useful to have a block of comments preceding
the declaration, as in Figuée This comments before the declaration use the format given in
Section5.2.

5.4 Curly braces: { goes at the end of aline

Open curly braces should not appear on lines by themselves. Instead, they should be placed at

the end of the preceding line. Close curly braces always appear as the first non-blank character

on a line. Figur& shows how to use curly braces in statements such asdwhi | e, and

Figure6 shows how curly braces should be used in structure declarations f Ifstatement

has arel se clause theel se appears on the same line as the precddiagd the following

{ . Close curly braces are indented to the same level as the outer code, i.e., four spaces less than
the statements they enclose.

Tcl/Tk Engineering Manual September 1, 1994 12



1T (searchPtr->linesLeft <= 0) {
goto searchOver;

/*

* The outernobst |oop iterates over lines that may potentially contain
* arelevant tag transition, starting fromthe current segnent in

* the current |ine.

*/

segPtr = searchPtr->nextPtr;
while (1) {
/*

* Check for nore tags on the current line.
*/

for ( ; segPtr !'= NULL; segPtr = segPtr->nextPtr) {
if (segPtr == searchPtr->lastPtr) ({
goto searchOver;

Figure 5. Comments in code have the form shown above, using full lines, with lined-up stars,
the/ * and*/ symbols on separate lines, and blank separator lines around each comment
(except that the leading blank line can be omitted if the comment is at the beginning of a code
block).

The followi ng structure defines a variable trace, which is used to

i nvoke a specific C procedure whenever certain operations are perforned
on a variabl e.

/

* X X X X

t ypedef struct VarTrace {

Tcl _Var TraceProc *traceProc;/* Procedure to call when operations given
by flags are performed on variable. */
Argunment to pass to proc. */

What events the trace procedure is
interested in: OR ed conbination of

*
ClientData clientDat a; /*
"
* TCL_TRACE_READS, TCL_TRACE WRI TES, and
)
*

int flags;

TCL_TRACE_UNSETS. */
Next in list of traces associated with
a particular variable. */

struct VarTrace *nextPtr; /
} Var Trace;

Figure 6. Use side-by-side comments when declaring structure members and procedure
arguments.

The only case where a { appears on a line by itself is the initial { for the body of a proce-
dure (see Figures 3 and 4).

Always use curly braces around compound statements, even if there is only one statement
in the block. Thus you shouldnirite code like

if (filePtr->nunlines == 0) return -1;
but rather

if (filePtr->nunLines == 0) {
return -1;
}

This approach makes code less dense, but it avoids potential mistakes when adding additional
lines to an existing single-statement block. It also makes it easier to set breakpoints in a debug-
ger, since it guarantees that each statement on is on a separate line and can be named individu-
ally.

Tcl/Tk Engineering Manual September 1, 1994 13



if ((linePtr->position.linelndex > position.linelndex)
|1 ((litnePtr->position.linelndex == position.linelndex)
&& ((linePtr->position.charlndex + |inePtr->length)
> position.charlndex))) {
return;

}

line = Mk_GetLine(newPtr->filelnfoPtr->file,
linePtr->position.linelndex, (int *) NULL);

XDr awl mageSt ri ng( mxwPt r - >di spl ay, nxwPtr->fil eW ndow,
mKwPtr->textCGe, x, y + nxwPtr->fontPtr->ascent,
control, 2);

Figure 7. Continuation lines are indented 8 spaces.

There is one exception to the rule about enclosing blodkk.ifrori f statements with
cascadeel se i f clauses, you may use a form like the following:

if (strcnp(argv[1l], "delete") == 0) {

} else if (strcenp(argv[1], "get") == 0) {
} el.sé.if (strcnp(argv[1], "set") == 0) {
} else {

}

5.5 Continuation lines are indented 8 spaces

You should use continuation lines to make sure that no single line exceeds 80 characters in
length. Continuation lines should be indented 8 spaces so that theybe@onfused with an
immediately-following nested block (see Figiie Pick clean places to break your lines for
continuation, so that the continuation doésivscure the structure of the statement. For exam-
ple, if a procedure call requires continuation lines, make sure that gachesut is on a single
line. If the test for anf orwhi | e command spans lines, try to make each line have the same
nesting level of parentheses if possible. I try to start each continuation line with an operator
such ag, &&, or| | ; this makes it clear that the line is a continuation, since a new statement
would never start with such an operator

5.6 Avoid macros except for simple things

#def i ne statements provide a fine mechanism for specifying constants symbgéindllyou
should always use them instead of embedding specific numbers in your code. Hinigever
generally a bad idea to use macros for complex operations; procedures are almost always better
(for example, you can set breakpoints inside procedures but not in the middle of macros). The
only time that it is OK to usg#def i ne’s for complex operations is if the operations are criti-
cal to performance and there is no other way to get the performance (have you measured the
performance before and after to be sure it matters?).

When defining macros, remember always to enclose gfuen@nts in parentheses:

#define Mn(a, b) (((a) < (b)) ? (a) : (b))
Otherwise, if the macro is invoked with a compleywement such as* b orsnmal | | | red it
may result in a parse error, @ven worse, an unintended result that iadift to debug.

6. Documenting code

The purpose of documentation is to save time and reduce errors. Documentation is typically
used for two purposes. First, people will read the documentation to find out how to use your
code. For example, they will read procedure headers to learn how to call the procedures. Ide-

Tcl/Tk Engineering Manual September 1, 1994 14



ally, people should have to learn as little as possible about your code in order to use it.correctly
Second, people will read the documentation to find out how your code works intexm &gy

can fix bugs or add new features; again, good documentation will allow them to make their
fixes or enhancements while learning the minimum possible about your code. More documen-
tation isnt necessarily better: wading through pages of documentation may not be any easier
than deciphering the coderyTto pick out the most important things that will help people to
understand your code and focus on these in your documentation.

6.1 Document things with wide impact

The most important things to document are those tfedtahany diferent pieces of a pro-
gram. Thus it is essential that every procedure interface, every structure declaration, and every
global variable be documented cleatyyou havent documented one of these things it will be
necessary to look at all the uses of the thing to figure out rosupposed to work; this will
be time-consuming and erfprone.

On the other hand, things with only local impact may not need much documentation. For
example, in short procedures | donsually have comments explaining the local variables. If
the overall function of the procedure has been explained, and if thémmigii code in the
procedure, and if the variables have meaningful names, then it will be easy to figure out how
they are used. On the other hand, for long procedures with many variables | usually document
the key variables. Similarlyvhen | write short procedures | donsually have any comments
in the procedurs’code: the procedure header provides enough information to figure out what
is going on. For long procedures | place a comment block before each major piece of the pro-
cedure to clarify the overall flow through the procedure.

6.2 Don'tjust repeat what' s in the code

The most common mistake | see in documentation (besides it not being there at all) is that it
repeats what is already obvious from the code, such as this trivial (but exasperatingly common)

example:
/*
* | ncrenent i.
*/
i +=1;

Documentation should provide higHewrel information about the overall function of the code,
helping readers to understand what a complex collection of statements really means. For exam-
ple, the comment

/*
* Probe into the hash table to see if the synbol exists.
*/
is likely to be much more helpful than
/*

* Mask off all but the lower 8 bits of x, then index into table
* t, then traverse the list |looking for a character string
* jdentical to s.
*/
Everything in this second comment is probably obvious from the code that follows it.
Another thing to consider in your comments is word choice. Userelift words in the
comments than the words that appear in variable or procedure names. For example, the com-

ment
/*
* VmvapPage - -
*

* Map a page.

*

Tcl/Tk Engineering Manual September 1, 1994 15



which appears in the header for the Sprite procedure VmMapPage tgoeside any new
information. Everything in the comment is already obvious from the procedawrie. Here
is @ much more useful comment:

/*

*VmMapPage --

*

*  Make the given physical page addressable in the kernel's
*  virtual address space. This procedure is used when the
*  kernel needs to access a user’s page.

*

This comment tellsvhy you might want to use the procedure, in additiowtat it does,
which makes the comment much more useful.

6.3 Document each thing in exactly one place

Systems evolve over time. If something is documented in several places, it will be hard to keep
the documentation up to date as the system changes. Instead, try to document each major
design decision in exactly one place, as near as possible to the code that implements the design
decision. For example, put the documentation for each structure right next to the declaration
for the structure, including the general rules for how the structure is usede¥d not explain

the fields of the structure again in the code that uses the structure; people can always refer
back to the structure declaration for this. The principal documentation for each procedure goes
in the procedure headdtheres no need to repeat this information again in the body of the
procedure (but you might have additional comments in the procedure body to fill in details not
described in the procedure header). If a library procedure is documented thoroughly in a man-
ual entry then | may make the header for the procedure very terse, simply referring to the man-
ual entry For example, | use this terse form in the headers focktlommand procedures,

since there is a separate manual entry describing each command.

The other side of this coin is that every major design decision needs to be docuahented
least once. If a design decision is used in many places, it may be hard to pick a central place to
document it. Ty to find a data structure or key procedure where you can place the main body
of comments; then reference this body in the other places where the decision is used. If all else
fails, add a block of comments to the header page of one of the files implementing the decision.

6.4 Write clean code

The best way to produce a well-documented system is to write clean and simple code. This
way there wort'be much to document. If code is clean, it means that there are a few simple
ideas that explain its operation; all you have to do is to document those key ideas. When writ-
ing code, ask yourself if there is a simple concept behind the code. If not, perhaps you should
rethink the code. If it takes a lot of documentation to explain a piece of code, it is a sign that
you havert found an elegant solution to the problem.

6.5 Document as you go

It is extremely important to write the documentation as you write the cagleely tempting
to put of the documentation until the end; after all, the code will change, so why waste time
writing documentation now when you'll have to change it later? The problem is that the end
never comes — there is always more code to write. Also, the more undocumented code that you
accumulate, the harder it is to work up the gnéo document it. So, you just write more
undocumented code. I've seen many people start a project fully intending to go back at the end
and write all the documentation, but I've never seen anyone actually do it.

If you do the documentation as you go, it wiadd much to your coding time and you
won't have to worry about doing it latélso, the best time to document code is when the key
ideas are fresh in your mind, which is when you're first writing the code. When | write new
code, | write all of the header comments for a group of procedures before | fill in any of the

Tcl/Tk Engineering Manual September 1, 1994 16



bodies of the procedures. This way | can think about the overall structure and how the pieces fit
together before getting bogged down in the details of individual procedures.

6.6 Document tricky situations

If code is non-obvious, meaning that its structure and correctness depend on information that
won't be obvious to someone reading it for the first time, be sure to document the non-obvious
information. One good indicator of a tricky situation is a bug. If you discover a subtle property
of your program while fixing a bug, be sure to add a comment explaining the problem and its
solution. Of course, & even better if you can fix the bug in a way that eliminates the subtle
behavior but this isnt always possible.

7. Testing

One of the environments wherel Works best is for testing. If all the functionality of an appli-
cation is available asclTcommands, you should be able to writd Scripts that exercise the
application and verify that it behaves corredilgr example, dl contains a laye suite of tests

that exercise nearly all of thelfunctionality Whenever you write new code you should write

Tcl test scripts to go with that code and save the tests in files so that they can be re-run later
Writing test scripts ist’as tedious as it may sound. If you're developing your code carefully
you're already doing a lot of testing; all you need to do is type your test cases into a script file
where they can be re-used, rather than typing them interactively where they vanish into the
void after they're run.

7.1 Basics

Tests should be ganized into script files, where each file contains a collection of related tests.
Individual tests should be based on the procetast , just like in the Tl and Tk test suites.
Here are two examples:
test expr-3.1 {floating-point operators} {
expr 2.3*.6
} 1.38
test expr-3.2 {floating-point operators} {
list [catch {expr 2.3/0} msg] $nsg
} {1 {divide by zero}}
t est is a procedure defined in a script file nardefls, which issour ced by each test file.
t est takes four gguments: a test identifieat string describing the test, a test script, and the
expected result of the scriptest evaluates the script and checks to be sure that it produces
the expected result. If not, it prints a message like the following:
==== expr-3.1 floating-point operators
==== Contents of test case:

expr 2.3*.6

==== Result was:

1.39

---- Result should have been:

1.38

---- expr-2.1 FAILED
To run a set of tests, you start up the applicationrsand ce a test file. If all goes well no
messages appeatr; if errors are detected, a message is printed for each one.

The test identifiersuch agxpr - 3. 1, is printed when errors occut can be used to
search a test script to locate the source for a failed test. The first part of the idsutfiexrs
expr, should be the same as the name of the test file, except that the test file should have a
.t est extension, such a&xpr .t est. The two numbers allow you to divide your tests into
groups. The tests in a particular group (e.g., alether - 3. n tests) relate to a single sub-fea-

Tcl/Tk Engineering Manual September 1, 1994 17



ture, such as a single C procedure or a single optiondfaimmand. The tests should appear
in the test file in the same order as their numbers.

The test name, such Bikoat i ng- poi nt oper at or s, is printed when errors occur
It provides human-readable information about the general nature of the test.

Before writing tests | suggest that you look over some of the test filesl fand Tk to see
how they are structuredo¥ may also want to look at tiREADVE files in the €l and Tk test
directories to learn about additional features that provide more verbose output or restrict the set
of tests that are run.

7.2 Organizing tests

Organize your tests to match the code being tested. The best way to do this is to have one test
file for each source code file, with the name of the test file derived from the name of the source
file in an obvious way (e.g.ext W nd. t est contains tests for the code in
t kText W nd. c). Within the test file, have one group of tests for each procedure (for exam-
ple, all thet ext W nd- 2. ntests int ext W nd. t est are for the procedure
TkText W ndowCrrd). The order of the tests within a group should be the same as the order
of the code within the procedure. This approach makes it easy to find the tests for a particular
piece of code and add new tests as the code changes.

The Tcl test suite was written a long time ago and usedexelitt style where there is one
file for each € command or group of related commands, and the tests are grouped within the
file by sub-command or features. In this approach the relationship between tests and particular
pieces of code is much less obvious, so it is harder to maintain the tests as the code evolves. |
don't recommend using this approach for new tests.

7.3 Coverage

When writing tests, you should attempt to exercise every line of source code at least once.
There will be occasionally be code that you tamkercise, such as code that exits the applica-
tion, but situations like this are rareolymay find it hard to exercise some pieces of code
because existingcTcommands doh’provide fine enough control to generate all the possible
execution paths (for example, at the time | wrote the test suitelfardiynamic string facility
there were very fewcl commands using the facility; some of the procedures were not called at
all). In situations like this, write one or more neal gommands just for testing purposes. For
example, the filé cl Test . c in the Tl source directory contains a command
t est dst ri ng, which provides a number of options that allow all of the dynamic string code
to be exercised.cl Test . ¢ is only included in a special testing versiort of sh, so the
t est dst ri ng command isrt’present in normalcT applications. Use a similar approach in
your own code, where you have an extra file with additional commands for testing.

It's not suficient just to make sure each line of code is executed by your tests. In addition,
your tests must discriminate between code that executes correctly and codettbareset.
For example, write tests to make sure that then andel se branches of eadhf statement
are taken under the correct conditions. For loops, rder€lift tests to make the loop execute
zero times, one time, and two or more times. If a piece of code removes an element from a list,
try cases where the element to be removed is the first element, last element, only element, and
neither first element nor lastryTto find all the places where fifent pieces of code interact in
unusual ways, and exercise thdeati&nt possible interactions.

7.4 Memory allocation

Tcl and Tk use a modified memory allocator that checks for several kinds of memory alloca-
tion errors, such as freeing a block twice, failing to free a block, or writing past the end of a
block. In order to use this allocatalont callmal | oc, fr ee, orreal | oc directly. Call

ckal | oc instead ofral | oc, ckf r ee instead of r ee, andckr eal | oc instead of

real | oc. These procedures behave identicallgdb| oc, f r ee, andr eal | oc except that

Tcl/Tk Engineering Manual September 1, 1994 18



they monitor memory usagékal | oc, ckf r ee, andckr eal | oc are actually macros that
can be configured with a compiler switchT&L_ MEM DEBUG s defined, they perform the
checks but run more slowly and use more memoryCif  MEM DEBUGIs not defined, then
the macros are jugidef i ned tomal | oc, fr ee, andr eal | oc so there is no penalty in
efficiency | always run withTCL_ VEM _DEBUG in my development environment and you
should too. Cffcial releases typically do not haV€L_MEM _DEBUG set.

If you setTCL_MEM DEBUG anywhere in your code then you must set it everywhere
(including the Tl and Tk libraries); the memory allocator will get hopelessly confused if a
block of memory is allocated withal | oc and freed wittckf r ee, or allocated witttkal -
| oc and freed with r ee.

There is nothing equivalent tal | oc in the debugging memory allocattfryou need a
new block to be zeroed, catenset to clear its contents.

If you compile withTCL_MEM DEBUG, then an additionalcl command nameatenor y
will appear in your application (assuming that you’re using the standhod Tk main pro-
gram). Tharenor y command has the following options:

menory active file
Dumps a list of all allocated blocks (and where they were allocatéd) ®. Memory
leaks can be tracked down by comparing dumps maddexedif times.

menory break_on_mal | oc nunber
Enter the debugger afteunber calls tockal | oc.

menory info
Prints a report containing the total allocations and frees soidegan, the number of
blocks currently allocated, the number of bytes currently allocated, and the maximum
number of blocks and bytes allocated at any one time.

menory init onoff
If onof f ison, new blocks of memory are initialized with a strange value to help
locate uninitialized uses of the block. Any other valueofoof f turns initialization
off. Initialization is on by default.

menory trace onoff
If onof f ison, one line will be printed to stderr for each calttal | oc. Any other
value foronof f turns tracing df Tracing is of by default.

menory trace_on_at _mal |l oc nunber
Arranges for tracing to be turned on aftember calls tockal | oc.

menory val i date onoff
If onof f ison, guard zones around every allocated block are checked on every call to
ckal | oc orckf r ee in order to detect memory overruns as soon as possibtefff
is anything other thaon, checks are made only duringf r ee calls and only for the
block being freed. Memory validation has a vergéaperformance impact, so it if of
by default.

The debugging memory allocator is inferior in many ways to commercial products like
Purify, so its worth using one of the commercial products if possible. Even so, please use
ckal | oc andckf r ee everywhere in your code, so that other people without access to the
commercial checkers can still use thot debugging allocator

7.5 Fixing bugs
Whenever you find a bug in your code it means that the test suite s@siplete. As part of
fixing the bug, you should add new tests that detect the presence of the bug. | recommend writ-
ing the tests after you've located the bugltsfiore you fix it. That way you can verify that the
bug happens before you implement the fix and goes away afterwards, so you'll know you've
really fixed something. Use bugs to refine your testing approach: think about what you might
be able to do diérently when you write tests in the future to keep bugs like this one from
going undetected.

Tcl/Tk Engineering Manual September 1, 1994 19



7.6 Tricky features

| also use tests as a way of illustrating the need for tricky code. If a piece of code has an
unusual structure, and particularly if the code is hard to explain, | try to write additional tests
that will fail if the code is implemented in the obvious manner instead of using the tricky
approach. This wayf someone comes along lgtdoesnt understand the documentation for

the code, decides the complex structure is unnecessarghanges the code back to the sim-
ple (but incorrect) form, the test will fail and the person will be able to use the test to under-
stand why the code needs to be the way it is. lllustrative tests are not a substitute for good
documentation, but they provide a useful addition.

7.7 Testindependence

Try to make tests independent of each gtbethat each test can be understood in isolation.

For example, one test shoulttldepend on commands executed in a previous test. This is
important because the test suite allows tests to be run selectively: if the tests depend on each
other then false errors will be reported when someone runs a few of the tests without the oth-
ers.

For convenience, you may execute a few statements in the test file to set up a test configu-
ration and then run several tests based on that configuration. If you do this, put the setup code
outside the calls to theest procedure so it will always run even if the individual tests aren’
run. | suggest keeping a very simple structure consisting of setup followed by a group of tests.
Don't perform some setup, run a few tests, modify the setup sligintlya few more tests,
modify the setup again, and so on. If you do this, it will be hard for people to figure out what
the setup is at any given point and when they add tests later they are likely to break the setup.

8. Porting issues

The X Window System, ANSI C, and POSIX provide a standard set of interfaces that make it
possible to write highly portable code. Howewsame additional work will still be needed if

code is to port among all of the UNIX platforms. Ad @nd Tk move from the UNIX world

onto PCs and Macintoshes, porting issues will become even more important. This section con-
tains a few tips on how to write code that can run on mafgrelift platforms.

8.1 Stick to standards

The easiest way to make your code portable is to use only library interfaces that are available
everywhere (or nearly everywhere). For example, the ANSI C library procedures, POSIX sys-
tem calls, and Xlib windowing calls are available on many platforms; if you code to these stan-
dards your packages will be quite portableoid using system-specific library procedures,

since they will introduce porting problems.

8.2 Minimize #ifdefs

Although there will be situations where you have to do thindsrdifitly on diferent
machinesti f def s are rarely the best way to deal with these problems. If you load up your
code with#i f def statements based on various machines and operating systems, the code will
turn into spaghettiti f def s make code unreadable: it is hard to logkidtdef -ed code and
figure out exactly what will happen on any one machine. Furtherghiofelef s encourage a
style where lots of machine dependencies creep all through the code; it is much better to isolate
machine dependencies in a few well-defined places.

Thus you should almost never dtief def s. Instead, think carefully about the ways in
which systems diér and define procedural interfaces to the machine-dependent code. Then
provide a diferent implementation of the machine-dependent procedures for each machine.
When linking, choose the version appropriate for the current machine. This way all of the

Tcl/Tk Engineering Manual September 1, 1994 20



machine dependencies for a particular system are located in one or a few files that are totally

separate from the machine-dependent code for other systems and from the main body of your

code. The only “conditional” code left will be the code that selects which version to link with.
You wont be able to eliminat#i f def s completelybut please avoid them as much as

possible. If you end up with code that has a Igtidfdef s, this should be a warning to you

that something is wrong. See if you can find a way togaroze the code (perhaps using the

techniques described later in this section) to reduce the numidief déf s.

8.3 Organize by feature, not by system

Don't think about porting issues in terms of specific systems. Instead, think in terms of specific
features that are present or absent in the systems. For exampleddate your code up

according to what is needed in HP-UX versus Solaris vergnddws. Instead, consider what
features are present in thefdient systems; for example, some systems haee api d pro-
cedure, while others ddryet provide one, and some systems have ANSI C compilers that sup-
port procedure prototypes, while some systems do not.

The feature-based approach has a number of advantages over the system-based approach.
First, many systems have features in common, so you can share feature-based porting code
among diferent systems. Second, if you think in terms of features then you can consider each
feature separately (“what do | do if there iswa t pi d?"); this replaces one Ige problem
with several smaller problems that can be dealt with individuadistly, theaut oconf pro-
gram can be used to check for the presence or absence of particular features and configure your
code automaticallyOnce you've gotten your code running on severémint systems, you'll
find that many new systems can be handled with no additional work: their features are similar
to those in systems you've already considere@dgamconf can handle them automatically

8.4 Use emulation

One of the cleanest ways to handle porting problems is with emulation: assume the existence
of certain procedures, such as those in the POSIX standard, and if thiegxiiron a given
system then write procedures to emulate the desired functionality with the facilities that are
present on the system. For example, whariiBt started being used widely | discovered that
many systems did not support thei t pi d kernel call, even though it was part of the POSIX
standard. So, | wrotewai t pi d procedure myself, which emulated the functionality of
wai t pi d using thenai t andwai t 3 kernel calls. The best way to emulags t pi d was
with wai t 3, but unfortunatelyvai t 3 wasnt available everywhere eitheso the emulation
worked diferently on systems that hagi t 3 and those that supported omigi t . The
aut oconf program checks to see which of the kernel calls are available, includes the emula-
tion forwai t pi d if it isn’t available, and sets a compiler flag that indicates to the emulation
code whether or netai t 3 is available.

You can also emulate usi#glef i nes in a header file. For example, not all systems sup-
port symbolic links, and those that dosupport symbolic links dohsupport the st at ker-
nel call eitherFor these systemgllusesst at to emulatd st at with the following
statement it cl Uni x. h:

#define | stat stat

If a header file is missing on a particular system, write your own version of the header file
to supply the definitions needed by your code. Then yow#icanl ude your version in your
code if the system doesmiave a version of its own. For example, here is the code in
t cl Uni x. h that handlesini st d. h, which isnt yet available on all UNIX systems:
#i f def HAVE_UNI STD_H
#i ncl ude <uni std. h>
#el se

#i ncl ude "conpat/unistd. h"
#endi f

Tcl/Tk Engineering Manual September 1, 1994 21



Theconf igure script generated bgutoconf checks for the existence whistd.h  in
the system include directories and $¢f8/E_UNISTD_Hf it is present. If it isrt’ present,
tclUnix.h includes a version from thellsource tree.

8.5 Use autoconf

The GNUautoconf program provides a powerful way to configure your code féereift
systems. \Wh autoconf you write a script calledonf igure.in  that describes the port-

ing issues for your software in terms of particular features that are needed and what to do if
they arert present. Before creating a release of your software yoauteeonf , which pro-
cessegonf igure.in and generates a shell script cabedf igure . You then include

conf igure with your distribution.

When it is time to install the distribution on a particular system, the installer runs the
conf igure script.conf igure pokes around in the system to find out what features are
present, then it modifies tivakef ile  accordingly The modifications typically consist of
compiling additional files to substitute for missing procedures, or setting compiler flags that
can be used for conditional compilation in the code.

8.6 Porting header file

In spite of all the above advice, you will still end up needing some conditional compilation, for
example to include alternate header files where standard ones are missitgedrite

symbols that arehdefined on the system. Put all of this code in the porting header file for the
package, the#include this header file in each of the source files of the packaigie this
approach you only need to change a single place if you have to modify your approach to porta-
bility, and you can see all of the porting issues in one placecah look atclPort.h and

tkPort.h  for examples of porting header files.

9. Miscellaneous

9.1 Changes files

Each package should contain a file narcieghges that keeps a log of all significant changes
made to the package. Thkeanges file provides a way for users to find out whatew in

each new release, what bugs have been fixed, and what compatibility problems might be intro-
duced by the new release. Tdtenges file should be in chronological orddust add short

blurbs to it each time you make a change. Here is a sample from tdhaiges file:

5/19/94 (bug f ix) Canvases didn't generate proper Postscript for
stippled text.

5/20/94(newfeature)Added"bell'commandtoringthedisplay'sbell.

5/26/94 (feature removed) Removed support for “f ill" justify mode
from Tk_GetJustify and from the TK_CONFIG_JUSTIFY conf iguration
option. None of the built-in widgets ever supported this mode

anyway.

*** POTENTIAL INCOMPATIBILITY ***

The entries in thehanges file can be relatively terse; once someone finds a change that is
relevant, they can always go to the manual entries or code to find out more about it. Be sure to
highlight changes that cause compatibility problems, so people can schatiges file

quickly to locate the incompatibilities.

Tcl/Tk Engineering Manual September 1, 1994 22



