
by

Jim Lewis

SynthWorks VHDL Training

Jim@SynthWorks.com

SynthWorks

VHDL's OSVVM,
The Death of SystemVerilog?

2

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

VHDL's OSVVM, the Death of SystemVerilog?

Copyright © 2013 by SynthWorks Design Inc.
Reproduction of this entire document in whole for individual usage is permitted.
All other rights reserved.

In particular,without express written permission of SynthWorks Design Inc,
You may not alter, transform, or build upon this work,
You may not use any material from this guide in a group presentation,
tutorial, training, or classroom
You must include this page in any printed copy of this document.

This material is derived from SynthWorks' class, VHDL Testbenches and Verification

This material is updated from time to time and the latest copy of this is available at
http://www.SynthWorks.com/papers

Contact Information
Jim Lewis, President
SynthWorks Design Inc
11898 SW 128th Avenue
Tigard, Oregon 97223
503-590-4787
jim@SynthWorks.com

www.SynthWorks.com

3

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

VHDL's OSVVM, the Death of SystemVerilog?

Topics
What is OSVVM, …?
Constrained Random (CR) Methodology is 2X More Work
Writing Functional Coverage is Easy
Constrained Random is 5X or More Slower
Intelligent Coverage
OSVVM is More Capable
Randomization in OSVVM
OSVVM Loves Any Testbench
Transactions are more than Structure
Objections to VHDL
OSVVM Summary

OSVVM is a step ahead of SystemVerilog and UVM

4

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

What is OS-VVM?
Open Source VHDL Verification Methodology

Leading edge verification for your VHDL team
Mixes well with other approaches (directed, algorithmic, file, random)
Works in any VHDL testbench
Readable by All (in particlar RTL engineers)

Packages + Methodology for:
Functional Coverage (FC)
Constrained Random (CR)
Intelligent Coverage - Test generation using FC holes

Low cost solution to leading edge verification
Works with regular VHDL simulators
Packages are FREE

5

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

What is Functional Coverage?

Test Done =
100 % Functional Coverage + 100 % Code Coverage

Code that observes execution of your test plan
Tracks requirements, features, and boundary conditions
Model interface and design requirements
Required for randomized tests.

Cross Coverage
Track relationships between multiple objects
Has the each pair of registers been used with the ALU?

Point Coverage (aka Item Coverage)
Track relationships within a single object
Bins of values, such as transfer sizes:

1, 2, 3, 4-127, 128-252, 253, 254, 255

6

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

What is Constrained Random?

Constrained Random (CR)
Models input values, transactions, and/or sequences using constraints
Constraints can be equations (SV) or code (VHDL)
SystemVerilog uses a solver to balance the randomization

7

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

CR is 2X More Work than OSVVM

Result:
CR: 2 models: Randomization Constraints + FC
OSVVM: Only need a FC Model. Less Work (2X?)

OSVVM Intelligent Coverage Methodology
Write a functional coverage model
Generate stimulus by randomizing across holes in the FC model

Constrained Random (CR) Methodology
Write a randomization constraint model
Write a functional coverage model
Generate stimulus by randomizing using randomization constraints

8

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Writing Functional Coverage

Testing an ALU with Multiple Inputs:

Mux
8:1

Mux
8:1

Q0

Q7

D0

D7
...... ...

...

SRC1

SRC2

Need to test every register in SRC1 with every register in SRC2

R7
R6
R5
R4
R3
R2
R1
R0

R7R6R5R4R3R2R1R0
SRC2

S
R
C
1

9

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Writing Functional Coverage

Functional Coverage with OSVVM
is as concise as language syntax.

Uniform
Randomization

Covered = Done

Create Cross
Coverage Bins

Do Transaction

Collect Coverage

architecture Test3 of tb is
 shared variable ACov : CovPType ;
begin

 CollectCov : process
 variable RV : RandomPType ; -- randomization object
 variable Src1, Src2 : integer ;
 begin

 ACov.AddCross(GenBin(0,7), GenBin(0,7));

 while not ACov.IsCovered loop

 Src1 := RV.RandInt(0, 7) ;

 Src2 := RV.RandInt(0, 7) ;

 ACov.ICover((Src1, Src2)) ;

 DoAluOp(TRec, Src1, Src2) ;

 end loop ;

 ACov.WriteBin ;
 EndStatus(. . .) ;
end process ;

Coverage Object

10

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Constrained Random is 5X or More Slower
Constrained random (CR) is at best a uniform randomization

Uniform distributions repeat before generating all cases
In general, to generate N cases, it takes O(N*log N) randomizations

"From Volume to Velocity" shows CR tests that are 10X to 100X too slow

The uniform randomization in ALU test requires 315 test iterations.
315 is approximately 5X too many iterations (64 test cases)
The "log N" factor significantly slows down constrained random tests.

R7
R6
R5
R4
R3
R2
R1
R0

R7R6R5R4R3R2R1R0
SRC2

S
R
C
1

5664 1966
45596343
643235 14
64433655
7710910554
83536364
64 174363
54566437

11

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Intelligent Coverage

Randomly select holes in Functional Coverage Model
"Coverage driven randomization" - but term is misused by others

Goal: Generate N Unique Test Cases in N Randomizations
Same goal of Intelligent Testbenches

R7

R6
R5

R4

R3
R2

R1
R0

R7R6R5R4R3R2R1R0

SRC2

S
R
C
1

1111 1111

11111111

11111111

11111111

11111111

11111111

11 111111

11111111

12

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Intelligent Coverage

Same test using Intelligent Coverage
architecture Test3 of tb is
 shared variable ACov : CovPType ;
begin

 CollectCov : process
 variable Src1, Src2 : integer ;
 begin

 ACov.AddCross(GenBin(0,7), GenBin(0,7));

 while not ACov.IsCovered loop

 (Src1, Src2) := ACov.RandCovPoint ;

 ACov.ICover((Src1, Src2)) ;

 DoAluOp(TRec, Src1, Src2) ;

 end loop ;

 ACov.WriteBin ; -- Report Coverage
 EndStatus(. . .) ;
end process ;

Intelligent Coverage
Randomization

Runs 64 iterations
@ 5X faster

13

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Refinement of Intelligent Coverage

 while not ACov.IsCovered loop

 (Reg1, Reg2) := ACov.RandCovPoint ;

 if Reg1 /= Reg2 then
 DoAluOp(TRec, Reg1, Reg2) ;
 ACov.ICover((Reg1, Reg2)) ;

 else
 -- Do previous and following diagional
 DoAluOp(TRec, (Reg1-1) mod 8, (Reg2-1) mod 8) ;
 DoAluOp(TRec, Reg1, Reg2) ;
 DoAluOp(TRec, (Reg1+1) mod 8, (Reg2+1) mod 8) ;

 -- Can either record all or select items
 ACov.ICover((Reg1, Reg2)) ;
 end if ;

 end loop ;

Refinement can be as simple or complex as needed

Use either directed, algorithmic, file-based or randomization methods.

14

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

OSVVM is More Capable

Each bin can have a different coverage goal
Goal = Number of times of value must occur to be covered
Coverage goals are also used as randomization weights

Functional Coverage is a data structure
Incremental additions supported
Captured sequentially - use any code (if, loops, …)

-- Goal Src1 Src2
ACov.AddCross(1, GenBin(0), GenBin(0,7)) ;
ACov.AddCross(2, GenBin(1), GenBin(0,7)) ;
ACov.AddCross(3, GenBin(2), GenBin(0,7)) ;
ACov.AddCross(4, GenBin(3), GenBin(0,7)) ;
ACov.AddCross(5, GenBin(4), GenBin(0,7)) ;
ACov.AddCross(6, GenBin(5), GenBin(0,7)) ;
ACov.AddCross(7, GenBin(6), GenBin(0,7)) ;
ACov.AddCross(8, GenBin(7), GenBin(0,7)) ;

Different coverage goal for each Src1 crossed with any Src2

15

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Randomization in OSVVM

Data3 := RV.RandInt((1,2,3,5,7,11));
Data4 := RV.RandInt((1,2,3,5,7,11), (5,11));

Randomize a value within the set (1, 2, 3, 5, 7, 11), except 5 & 11

Data1 := RV.RandInt(Min => 0, Max => 15) ;
Data2 := RV.RandInt(0, 15, (5,11)); -- except 5 & 11

Randomize a value in an inclusive range, 0 to 15, except 5 & 11

Implemented in RandomPkg

. . . -- ((val1, wt1), (val2, wt2), ...)
Data5 := RV.DistValInt(((1,7), (3,2), (5, 1)));

Weighted Randomization: Value + Weight

Weighted Randomization: Weight, Value = 0 .. N-1

Data6 := RV.DistInt ((7, 2, 1)) ;

16

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

OSVVM Supports Randomization

OSVVM uses code patterns to create constraints
 Example: Weighted selection of paths (test sequences)

See the RandomPkg Users Guide for more examples and seed setting

Code patterns can create a constrained random test environment, however,

OSVVM uses Intelligent Coverage as the primary randomization

Code patterns are used primarily as refinement.

StimGen : while TestActive loop -- Repeat until done

 case RV.DistInt((7, 2, 1)) is

 when 0 => -- Normal Handling -- 70%
 . . .

 when 1 => -- Error Case 1 -- 20%
 . . .

 when 2 => -- Error Case 2 -- 10%
 . . .

17

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

OSVVM Loves Any Testbench

Similar structure to other verification languages
Uses regular entities & architectures. Records on interfaces.
No OO required.

We prefer transaction based testbenches

TbMemIO

CPU
Model

Clock and
Reset

UartRx
Model

UartTx
Model

CPU
Model

SRAM
Model

DUT : MemIO

CpuIf UART

Timer

MemIf

IntCtrl

TestCtrlTestCtrlTestCtrl

18

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Transactions are more than Structure

-- CPU Write
nAds <= '0' after tpd, '1' after tperiod + tpd ;
Addr <= ADDR0 after tpd ;
Data <= X"A5A5" after tperiod + tpd ;
Wr_nRd <= '0' after tpd ;
wait until nRdy = '0' and rising_edge(Clk) ;

Structure: Encapsulate Interface Functionality in a Model

Abstract Initiation: Use a procedure to initiate a transaction

. . .
CpuWrite(CpuRec, ADDR0, X"A5A5");
CpuRead (CpuRec, ADDR0, DataO);
. . .

Result: Test is more readable
Testbench is not the exclusive domain of verification engineers
Simplifies writing tests.

19

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Objections to VHDL

No Solver
Intelligent coverage more effective than the best solver

No OO
Functional Coverage and Randomization needs data structures not OO

No Factory Class
Factory classes allow swapping of implementations in OO
Architectures give the same capability for concurrent programming

No Fork & Join
Fork & Join are for sequential programming - writing threads.
Concurrent programming uses handshaking (like hardware)

More effective at bundling of a models intent

20

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

OSVVM Summary

Intelligent Coverage = Simple, Powerful Methodology
Define Functional Coverage
Randomize across coverage holes
Refine with directed, algorithmic, file-based or CR methods

Faster
Test construction: Focus on FC (2X faster)
Simulations: No redundant stimulus (5X faster) and No solver

OSVVM
Goes beyond other verification languages (SV and 'e')
Readable by All (Verification and RTL engineers)
Works in any VHDL environment – in part or whole
Is Free – Open Source

Downloads: http://www.synthworks.com/blog/osvvm

SystemVerilog? Why bother!

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days

http://www.synthworks.com/comprehensive_vhdl_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

VHDL Coding for Synthesis 4 Days
 http://www.synthworks.com/vhdl_rtl_synthesis.htm
 Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design

techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

SynthWorks offers on-site, public venue, and on-line classes. See:
http://www.synthworks.com/public_vhdl_courses.htm

SynthWorks

VHDL Testbenches and Verification 5 days - OS-VVM bootcamp
 http://www.synthworks.com/vhdl_testbench_verification.htm

Learn the latest VHDL verification techniques including transaction-
based testing, bus functional modeling, self-checking, data structures
(linked-lists, scoreboards, memories), directed, algorithmic, constrained
random and coverage driven random testing, and functional coverage.

22

SynthWorks

Copyright © 2013 SynthWorks Design Inc.

Going Further / References

"From Volume to Velocity" by Walden Rhines of Mentor Graphics,
Keynote speech for DVCon 2011.

See http://www.mentor.com/company/industry_keynotes/

Jim's Blog: www.synthworks.com/blog

OSVVM Website: www.osvvm.org

Coverage Package Users Guide and Random Package Users Guide

