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Abstract

The current standard for VHDL Register Transfer
Level (RTL) Synthesis, IEEE standard 1076.6, is based on
a finite set of templates.  The templates supported by
1076.6 are based on a limited set of defacto practices that
were in use at the time the standard was written.  However,
VHDL is much more powerful and allows for greater
flexibility in terms of modeling.

Currently, enhancements for IEEE 1076.6-200X are in
the final stages of standardization.  Rather than adding
another finite set of limited templates, this effort
generalized the number templates.  This made it possible to
subsume the previous templates and include a wide variety
of new coding styles.  While the breadth of the standard
does permit some unusual coding styles, the intent is to
make sure that we did not leave out any good coding styles.

The intent of this paper is to illustrate some of the
good coding styles that have resulted from this effort and
explain how a designer will benefit from these coding
styles.

1. Introduction
IEEE 1076.6 standard is important to designers as it

lets you know what coding styles are supported by
compliant synthesis tools.  It also gives a designer a single
item to ask for when asking an EDA vendor to create tools
that support vendor independent coding styles.

This paper focuses on a designers needs and presents
coding style supported by the enhanced standard.

2. Single Edged Registers
The keystone to the register enhancements is a set of

rules that govern the creation of a register.  The following
is a simplified version of the rules.  A signal or variable
that reads a value that was written on a previous edge of the
same clock, has clock and any asynchronous control signals
on the sensitivity list, and never has a synchronous
assignment override an asynchronous assignment will
create a register.  These enhanced rules permit processes,
procedures, and concurrent assignments to be used to
create registers.

The enhanced standard permits a wide variety of coding
styles for registers.  This allows designers to move away
from an arbitrarily restrictive set of limited templates.  It
also allows the choices of register coding styles to be based
on what is most effective to implement the design and what
is most effective in simulation.

2.1. IF and Registers
The enhanced standard allows conditions that are

synchronous to clock to be included in the condition with
the clock edge specification.  This is shown by the
following example of a register with load enable.

LoadEnRegProc : process (Clk)
begin
 if LoadEn='1' and rising_edge(Clk) then
   Q <= D ;
 end if;
end process ; -- LoadEnRegProc

Going further, assignments can be made with separate
code blocks provided that asynchronous updates to signals
always have precedence over synchronous updates to
signals.  The following process shows reset being coded
separately from clock.  The advantage of this coding style
is that it allows reset to be specified for some signals
without having any logic implication for signals that do not
require reset.   This is shown in the following example
where Q1 has asynchronous reset and Q2 does not.

TwoReg2Proc : process( Clk, nReset)
begin
  if rising_edge(Clk) then
    Q1 <= D1 ;
    Q2 <= D2 ;
  end if ;
  if  nReset = '0' then    -- no reset on Q2
    Q1 <= '0' ;
  end if ;
end process ; -- TwoReg2Proc

Going further, the clock statement can be divided into
multiple pieces.

As long as the previous rules are followed,
combinational logic, latches, and registers may be mixed in
the same process. Note that from a simulation efficiency
point of view, this is not recommended.



2.2. Wait and Registers
The enhanced standard permits any form of wait that

clearly expresses a clock edge to be used to model a
register, provided that the wait statement is either first or
last in the process. The following shows a recommended
way to code a register with load enable.

LoadEnReg1Proc : process
begin
  wait on Clk until LoadEn='1' and Clk='1' ;
  Q <= D ;
end process ; -- LoadEnReg1Proc

From a synthesis perspective, the following wait
statements are equivalent to the above wait statement.
Note, in simulation one may be more efficient than another.

wait on Clk until LoadEn='1' and rising_edge(Clk) ;
wait until LoadEn='1' and rising_edge(Clk)  ;
wait until LoadEn='1' and Clk='1' and Clk='event ;

Going further, the standard permits any form of a wait
statement to be used as a sensitivity list provided that there
is additional code that identifies the clock edge.  For
example, a register with asynchronous reset can be
modeled as follows:

AsyncResetProc : process
begin
  wait until nReset='1' or Clk='1' ;
  if nReset='1'  then
    Q <= '0' ;
  elsif rising_edge(Clk) then
    Q <= D ;
  end if ;
end process ; -- AsyncResetProc

2.3. Concurrent Assignments and Registers
Conditional signal assignment is now permitted to be

used in its full VHDL-93 form (without the else).  As a
result both registers and latches can be modeled.  The
following creates a register.

Q <= D when rising_edge(Clk) ;

The following creates a register with asynchronous
reset and load enable:

Q <=
    '0'  when nReset = '0' else
    D   when LoadEn = '1' and rising_edge(Clk) ;

From a simulation perspective, the above coding styles
may execute slower than a process with a proper sensitivity
list (D and LoadEn not on sensitivity list).  Note that with
time it is expected that simulators will be able to optimize
the code appropriately.

2.4. Subprograms and Registers
The following example shows a procedure created in a

package that can be used to create a register.

package RegPkg is
  procedure DFF(
      signal Clk      : in   Std_Logic ;
                D         : in   Std_Logic ;
      signal Q         : out Std_Logic
   ) ;
   procedure DFFR( . . .) ;
   procedure DFFLE( . . .) ;
   . . .
end package RegPkg ;

package body RegPkg is
    procedure DFF(
      signal Clk      : in   Std_Logic ;
                D         : in   Std_Logic ;
      signal Q         : out Std_Logic
    ) is
    begin
      if rising_edge(Clk) then
        Q <= D;
      end if;
    end DFF;
   . . .
end package RegPkg ;

Registers get created when the subprogram is called.
The following example creates three registers in a
sequence.

  DFFR(Clk, nReset, D,       Reg1) ;
  DFFR(Clk, nReset, Reg1,  Reg2) ;
  DFFR(Clk, nReset, Reg3,  Q) ;

By referencing a different package, it would be
possible to switch from an asynchronous reset register
(favorable for an FPGA implementation) to a synchronous
reset register (favorable for an ASIC implementation).

3. Latches
For latches the usage of concurrent assignments and

procedures is now supported.

3.1. Concurrent Assignments and Latches
Latches can be created with either conditional signal

assignment or selected signal assignment as shown below.

Q <= D when Clk = '1' ;



with Gate select
  Q2 <= D2 when '1',
           unaffected  when others ;

3.2. Procedures and Latches
The following example shows a procedure created in a

package that can be used to create a latch.

begin Package LatchPkg is
procedure latch(
     ENABLE, D :in std_logic;
     signal Q :out std_logic ) ;
end package ;

package body LatchPkg is
  procedure latch(
     ENABLE, D :in std_logic;
     signal Q :out std_logic ) is

    if ENABLE ='1' then
      Q <= D;
    end if;
  end ;
end package ;

The following code creates a latch using the procedure
in LatchPkg.

      latch(Sel, A, Y);

3.3. Problematic Latch Coding Style
The following code is potentially problematic.  Should

it be implemented as a latch or combinational logic
(multiplexer with feedback)?

ALat : process ( ENABLE, D, Q)
begin
  if ENABLE = '1' then
    Q <= D;
  else
    Q <= Q ;
  end if;
end process;  -- ALat

In the extended standard, identity assignments, such as
“Q <= Q ;” are deleted by default before considering the
process.  As a result, by default, Q results in a latch.

This behavior will be overridden when the attribute
combinational is set to true for the process as shown below.

attribute COMBINATIONAL of ALat: process is TRUE;

In this case, the process will create a combinational
logic with feedback.  A potential implementation is shown
below.
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4. Combinational Logic
Few restrictions.  Complete sensitivity list.  Write

before Read.   Usage of Z implies tristate.  Assignment of a
metavalue UXW- implies don’t care.

4.1. Read Before Write, Signal
When a signal is read before it is written and a clock

condition is not present, combinational logic will be
produced. This is shown in the example below.
Furthermore since all signals read in the process are
required to be on the sensitivity list, read before write of a
signal when a clock edge is not present will either produce
combinational logic or it will produce an error.

CombProc : process (A, B, C, D)
begin
  Y <= C or D ;
  C <= A and B ;
end process ;

Note, the code is inefficient in simulation and it is
recommended that one avoid this type of code.

4.2. Read Before Write, Variable
It is recommend to avoid code that reads a variable

before writing it when a clock edge is not present.   The
synthesis tool is free to either produce an error or generate
any logic that will match the simulation behavior of this
code.   In general, this code is a logic error and it is
recommended that synthesis tool vendors produce an error
when encountering it.

StrangeProc : process (A, B, D)
  variable C : std_logic ;
begin
  Y <= C or D ;
  C := A and B ;
end process ;



5. Modeling ROM and RAM

5.1. RAM
RAM may be modeled for any register or latch.

Typically the RAM will be based on an array of integer,
std_logic, or std_logic_vector.  A RAM is required to be
created when the “ram_block” attribute is applied to a
signal or variable.   The example below shows a level
sensitive type of RAM.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.rtl_attributes.all;
entity ramlatch is
  generic (
      WIDTH : Natural := 8;
      DEPTH : Natural := 16);
  port (
      a : in std_logic_vector(DEPTH-1 downto 0) ;
      we : in std_logic ;
      d : in std_logic_vector(WIDTH-1 downto 0) ;
      q : out std_logic_vector(WIDTH-1 downto 0)
  );
end entity ramlatch;
architecture RTL of ramlatch is
    type ram_typ is array(0 to 2**DEPTH – 1) of
        std_logic_vector(WIDTH-1 downto 0);
    signal ram : ram_typ;
    attribute ram_block of ram : signal is "";
begin
    Ram_Proc: process (a, d, we) is
    begin
        if we = '1' then
            ram(to_integer(unsigned(a))  <= d;  -- write RAM
        end if;
      end process Ram_Proc;
     q <= ram(to_integer(unsigned(a))  ;  -- read RAM
end architecture RTL;

Either the writing to the RAM or reading from the
RAM can be register based by putting the appropriate piece
of code in a clocked process.    A non-null value for the
ram_block attribute will cause a specific library cell to be
picked as a candidate for implementation.

Use of the attribute, logic_block, as shown below will
require the model to be implemented with either latches or
registers (based on the code).

attribute logic_block of ram : signal is "TRUE";

5.2. ROM
A ROM may be modeled by either assigning a constant

value in a case statement or by looking up values in a
constant array.  A ROM is required to be created when the
“rom_block” attribute is applied to a signal or variable.
The example below shows a ROM with case statement.

library ieee;
use ieee.std_logic_1164.all;
use ieee.rtl_attributes.all;
entity ROM is
  port (
    Z : out  std_logic_vector(3 downto 0);
    A : in    std_logic_vector(2 downto 0)
  );
end entity ROM;
architecture RTL of ROM is
    attribute rom_block of Z : signal is "ROM32Kx16";
begin
  Rom_Proc : process (A) is
  begin
      case A is
        when "000" => Z <= "1011";
        when "001" => Z <= "0001";
        when "100" => Z <= "0011";
        when "110" => Z <= "0010";
        when "111" => Z <= "1110";
        when others => Z <= "0000";
      end case;
  end process Rom_Proc;
end architecture RTL;

The same ROM implemented with a constant array.

architecture RTL2 of ROM is
    type mem_typ is array(0 to 7) of
        std_logic_vector(3 downto 0);
    constant ROMINIT : mem_typ :=
      ( 0 => "1011", 1 => "0001", 2 => "0011",
        3 => "0010", 4 => "1110", others => "0000");
    attribute rom_block of ROMINIT : constant is
          "ROM_CELL_XYZ01";
begin
    Z <= ROMINIT(to_integer(unsigned(A)));
end architecture RTL2;

Use of the attribute logic_block will require the model
to be implemented as discrete random logic rather than a
ROM.



6. Multiple Edged Registers

6.1. Using IF and Dual-Edged flip-flops
The extended standard supports flip-flops with

multiple edges.  When multiple edges are specified for flip-
flops, the priority relationships of the clocks are ignored by
synthesis.

DualEdgeFF : process( nReset, Clk1, Clk2)
begin
  if rising_edge(Clk1) and nReset = '1' then
    Q <= D ;  -- Functional Data
  elsif rising_edge(Clk2) and nReset = '1' then
    Q <= SD ;  -- Scan Data
  elsif (nReset = '0') then
    Q <= '0' ;
  end if ;

  -- RTL_SYNTHESIS OFF
  if rising_edge(Clk1) and rising_edge(Clk2) then
    report "Warning: . . ." severity warning ;
    Q <= 'X' ;
  end if ;
  -- RTL_SYNTHESIS ON
end process;

The meta-comments, "-- RTL_SYNTHESIS OFF" and
"-- RTL_SYNTHESIS ON" cause the synthesis tool to
ignore the code between them.  This code can be used to
validate that the assumptions that were made for synthesis
are valid.  In this case the code makes sure both clocks do
not change at the same time.  If the RTL code is written this
way (and they work), RTL simulations will compare with
Gate level simulations.

The Dual-Edge coding concept can be used to handle
rising and falling edges of the same clock as shown below:

DualEdge_Proc: process (Clk, Reset) is
begin -- process DualEdge_Proc
  if Reset = '1' then
    Q <= (others => '0');
  elsif rising_edge(Clk) then
    Q <= D4Rise;
  elsif falling_edge(Clk) then
    Q <= D4Fall;
  end if;
end process DualEdge_Proc;

6.2. Implicit Finite Statemachines
Implicit statemachines use multiple clock

specifications (in the form of wait statements) in a single
process to model statemachines.  The state-register is not
explicitly identified. This modeling permits the description
of a statemachine at the protocol or algorithmic level.   The
following code creates a multiplier using a shift and add
algorithm.

MultProc : process
begin
  wait until clk = '1';
  if start = '1' then
    done <= '0';
    intY <= (others => '0');

    for i in A'range loop
      wait until clk = '1';
      if A(i) = '1' then      -- compute state 1
        intY <= (intY(6 downto 0) & '0') + B ;
      else
        intY <= (intY(6 downto 0) & '0') ;
      end if;
    end loop;

    done  <= '1';
  end if;
end process;

7. Creating Safe Statemachines
A safe statemachine is one that recovers from unused

states the implementation.  Consider the following
statemachine.  There are five values in the enumerated
type.  In the process, NextStateProc, each value in the
enumerated type has a corresponding case target.  In a
simulation, the others statement is never executed.  As a
result, most synthesis tools do not consider the others
statement when creating an implementation.

Setting the FSM_COMPLETE attribute to TRUE
requires a synthesis tool to use the mappings specified in
the others statement to specify a value for states in the
implementation that do not have a value specified in any
other way.  When FSM_COMPLETE is true, it is an error
if the statemachine has any unreachable states.

The FSM_STATE attribute allows either an encoding
type or state values to be assigned.  For state encodings,
there are BINARY, GRAY, ONE_HOT, ONE_COLD, or
AUTO.  By specifying state values, any encoding can be
created.  The encoding in the example specifies each state
to have a hamming distance of two.  With this encoding, if
noise or an SEU flip a bit in the state vector, the state
vector will end up in an invalid state and will end up going
to the recovery state specified in the others clause.



Specification of state values can be problematic if a state
is reduced.  With this insight, it would have been preferable
to have an encoding type to create a binary encoded
statemachine with a hamming distance of two (such as
HAMMING2) and a one to create a hamming distance of
three (such as HAMMING3).   It is likely that this will be
part of in a future version of 1076.6.

type StateType is (S0, S1, S2, S3, S4);
signal state, next: StateType;
attribute FSM_STATE of state : signal is
   "0000 0011 0110 1100 1001" ;
attribute FSM_COMPLETE of state : signal is TRUE;
. . .
NextStateProc : process
begin
  wait until Clk = '1' ;
  if nReset = '0' then
    state <= S0
  else
    case state is
      when S0 => state <= S1;
      when S1 => state <= S2;
      when S2 => state <= S3;
      when S3 => state <= S4;
      when S4 => state <= S0;
      when others => state <= S0;
    end case;
  end if  ;
end process;

8. Controlling Logic Terms
The job of a synthesis tool is to optimize logic.

Sometimes logic gets removed that needed in the final
circuit.  The hierarchy attributes give a designer the ability
to control some of this by partitioning a circuit into
separate pieces.

For example, in the following diagram, the “A and B”
term is redundant and would be optimized away.  This
section will demonstrate how to use attributes to prevent
this behavior.  Using the techniques shown here, it is
possible to constrain the implementation to a limited set of
choices.
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8.1. Using KEEP
When the keep attribute is applied to a signal, it directs

the synthesis to preserve this term through synthesis.  This
is effectively identical to inserting a non-movable buffer on
the net.  To preserve the AB term in the circuit above,
create a signal for each output of the “AND” gates and
apply the attribute KEEP to each signal.

signal AC, AB, BC : signal ;
attribute KEEP of AC, AB, BC : signal is TRUE;
. . .
AC <= A and C ;
AB <= A and B ;
BC <= B and not C ;

Z <=  AC or AB or BC ;

8.2. Using CREATE_HIERARCHY
When the CREATE_HIERARCHY attribute is applied

to a block, it indicates that the boundary around the
attributed object is to be maintained.  This means that
synthesis is not permitted to optimize terms across this
boundary.  To preserve the AB term in the circuit shown
previously, create a signal for each output of the “AND”
gates, enclose the logic that creates the “AND” gates in a
block statement, and apply the attribute
CREATE_HIERARCHY attribute to the block statement
label.

signal AC, AB, BC : signal ;
attribute CREATE_HIERARCHY of InterBlk : label is
TRUE ;
. . .
InterBlk : block
begin
  AC <= A and C ;
  AB <= A and B ;
  BC <= B and not C ;
end block ;

Z <=  AC or AB or BC ;

8.3. Cautions About Attributes
Attributes should be used to convey designer intent of

the circuit.  If the actions specified by the attributes are
only appropriate for a particular implementation of the
design, then synthesis tool commands should be used rather
than attributes.



9. Sensitivity Lists
In the enhanced standard, processes that create latches

and combinational logic are required to be specify all
signals read in the process.  As a result a synthesis tool is
required to produce an error for the following examples.

StrangeLatProc : process (A)  -- missing B
begin
  C <= A and B ;
end process ;

CouldBeARegProc: process (Clk) -- missing D
begin
  if (Clk = '1') then   -- no clock condition
    Q <= D ;
  end if ;
end process ;

For a more detailed explanation, see [LewisSingh02].

10. Subprograms
With the enhanced standard, subprograms can be

created to represent any simple functionality.  This is an
area that can be further exploited by future standards that
could create a small macro function library similar to the 74
series of digital board parts.

In synthesis, recursion is supported provided that the
procedure can be statically inlined.  Variables declared in
subporgrams are initialized on each call, and hence, cannot
retain a store value between calls of the subprogram.

11. Syntax Enhancements
Syntax enhancements include aliases, configurations,

entity instantiation (VHDL-93), conditional signal
assignment without an else clause (VHDL-93), and
guarded blocks (for latch and register creation).  For
examples, see [LewisSingh02].

12. Creating Gated Clocks
By setting the GATE_CLK attribute to true, a

synthesis tool will transform a register coded as a load
enable to a register with a gated clock.

attribute GATE_CLK  : boolean;
attribute GATE_CLK of Clk : signal is true;
. . .

LoadEnReg2Proc : process
begin
  wait on Clk until LoadEn='1' and Clk='1' ;
  Q <= D ;
end process ; -- LoadEnReg2Proc

13. Vendor Support
Writing a standard is the first step toward getting

portability in coding styles and methods for RTL synthesis.
The next step is vendor implementation. Supporting a
standard is a business decision.  To make this an easy
decision for the vendors, please be vocal in letting them
know that you want them to support the standard IEEE
1076.6-200X.   Often the most effective person to pass this
information to the vendors is the person who is purchasing
your EDA tools.   A particularly effective time to do this is
when buying new licenses or renewing your current
licenses.

14. Supporting Standards
VHDL standards are IEEE standards.  As a VHDL

community member it is both your right and responsibility
to join IEEE committees and participate in VHDL
standards.  If you don’t participate, the changes you
envision and wish for (no matter how simple or obvious)
will not happen.

To learn more about VHDL standards see the
following websites:

EDA Standards: http://www.eda.org
VHDL-200X: http://www.eda.org/vhdl-200x
RTL Synthesis: http://www.eda.org/siwg.
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