
SynthWorks

by

Jim Lewis

VHDL Training Expert at SynthWorks

IEEE 1076 Working Group Chair

OSVVM Chief Architect

Jim@SynthWorks.com

VHDL Testbench Techniques
that Leapfrog SystemVerilog

2

SynthWorks

VHDL Testbench Techniques

Copyright © 2013 by SynthWorks Design Inc.
Reproduction of this entire document in whole for individual usage is permitted.
All other rights reserved.

In particular,without express written permission of SynthWorks Design Inc,
You may not alter, transform, or build upon this work,
You may not use any material from this guide in a group presentation,
tutorial, training, or classroom
You must include this page in any printed copy of this document.

This material is derived from SynthWorks' class, VHDL Testbenches and Verification

This material is updated from time to time and the latest copy of this is available at
http://www.SynthWorks.com/papers

Contact Information
Jim Lewis, President
SynthWorks Design Inc
11898 SW 128th Avenue
Tigard, Oregon 97223
503-590-4787
jim@SynthWorks.com

www.SynthWorks.com

3

SynthWorks

VHDL Testbench Techniques

Agenda
Testbench Architecture
Transactions
Writing Tests
Randomization
Functional Coverage
Constrained Random is Too Slow!
Intelligent Coverage is More Capable
Coverage Closure is Faster with Intelligent Coverage
Self-Checking & Scoreboards
Scoreboards
Dispelling FUD

Goals: Thorough, Timely, and Readable Testing

4

SynthWorks

Testbench Architecture
Historically a separate testbench is written for different levels of testing

Each testbench slightly larger than the previous.

Stim UartCmdRTL

Stim UART

UartCmd Uart …

Core

Stim Memio

UART

UartCmd Uart …

CpuIf

System

5

SynthWorks

Testbench Architecture

Reduction in number of testbenches can minimize wasted effort.

But we need to plan from the System level

Many interfaces transport the same information

TB_System

Stim Memio

CpuIf UART

UartCmd Uart …

Model

Change from RTL to Core to System by:

Separating stimulus from interface signaling (signal wiggling)

Changing the Model (changes signal wiggling)

Changing the connections (via VHDL-2008 external names)

Leave items not used in a test unbound or use a dummy architecture

6

SynthWorks

Testbench Architecture

Test1
Architecture

Test2
Architecture

TestN
Architecture

. . .

System / Chip Level Testbench

TLM (transaction level model) implements signaling to DUT

TestCtrl to sequence and/or synchronize models

Each test is a separate architecture of TestCtrl

TbMemIO

CPU
Model

Clock &
Reset

UartRx
Model

UartTx
Model

SRAM
Model

DUT: MemIO

TestCtrl

CpuIf MemIf

UART

Timer

IntCtrl

TestCtrl TestCtrl
Entity

CPU
Model

UartRx
Model

UartTx
Model

Plan to pre-use system level models for Core and RTL tests

7

SynthWorks

Transactions

CpuWrite

ADDR0 ADDR0 InvalidInvalid

Clk

nAds

Read

Addr

nRdy

Data

nReset

InvD1 D1Invalid

Interface Operations, ie: CpuWrite, CpuRead, …
Essential for reuse and pre-use
2 Aspects: Initiation (stimulus) and Implementation (model)

CpuRead

8

SynthWorks

Transaction Initiation

-- CPU Write
nAds <= '0' after tpd, '1' after tperiod + tpd ;
Addr <= ADDR0 after tpd ;
Data <= X"A5A5" after tperiod + tpd ;
Wr_nRd <= '0' after tpd ;
wait until nRdy = '0' and rising_edge(Clk) ;

Writing tests by wiggling signals is slow, error prone, and inhibits reuse

Transaction initiation using procedures:

. . .
CpuWrite(CpuRec, ADDR0, X"A5A5");
CpuRead (CpuRec, ADDR0, DataO);
. . .

Simplifies writing tests.
Increases readability and maintainability

9

SynthWorks

Transaction Implementation
Implement transactions using either Subprograms or Entities

procedure CpuWrite (
 signal CpuRec : InOut CpuRecType ;
 constant AddrI : In std_logic_vector;
 constant DataI : In std_logic_vector
) is
begin
 CpuRec.nAds <= '0' after tpd, '1' after tperiod + tpd ;
 CpuRec.Addr <= AddrI after tpd ;
 CpuRec.Data <= DataI after tperiod + tpd ;
 CpuRec.Wr_nRd <= '1' after tpd ;
 wait until CpuRec.nRdy = '0' and rising_edge(CpuRec.Clk);
end procedure ;

Subprograms do both
Transaction initiation by calling the subprogram
Transaction implementation (signal wiggling) internal to subprogram

Use a package to separate the stimulus from implementation (model)

10

SynthWorks

Transaction Implementation
Entities +

Transaction initiation by calling the subprogram

CpuRec
CpuModel DUT

CpuBus
TestCtrl

CpuTestProc
CpuWrite(...)
CpuRead(...)

Advantages of Entity Approach
Model is concurrent
Implement it with either behavioral or RTL code
Keeps functionality, protocol checkers, timing checkers, result loggers
in the same model

Transaction implementation (signal wiggling) done by entity

Ok for some interfaces to use Entity and others to use Subprograms

11

SynthWorks

Transaction Interface
Records simplify interface between subprogram and DUT or model

Simplify updates

Can use 2 records
1 to the DUT from the model and 1 to the model from the DUT
Increases number of signals on subprogram interface

Can use 1 record with resolved types

type Model1RecType is record
 CmdRdy : std_logic ;
 CmdAck : std_logic ;

 UnsignedToModel : unsigned(15 downto 0) ;
 UnsignedFromModel : unsigned(15 downto 0) ;

 IntegerToModel : resolved integer ;
 IntegerFromModel : resolved integer ;
 TimeToModel : resolved time ;
 RealToModel : resolved real ;
end record ;

12

SynthWorks

Writing Tests
Tests can be either:

Directed - particularly good for testing registers
Algorithmic - particularly good for math
File Based - large or existing data sets (Images, Matlab, …)
Constrained Random
Intelligent Coverage

Use of a transaction based framework simplifies mixing of test types.

Not one approach works for everything.

13

SynthWorks

TbMemIOTestCtrlTestCtrl

Writing Tests
TestCtrl specifies transactions for each model

Controls, coordinates, and synchronizes test activities

CpuModel

UartTxBfm

UartRxBfm

TestCtrl

CpuTestProc
CpuWrite(...)
CpuRead(...)

UartTbTxProc
UartSend(...)

UartTbRxProc
UartCheck()

CPU Bus
CpuRec

Serial Data
to DUT

UartTxRec

UartRxRec Serial Data
from DUT

14

SynthWorks

architecture Test1 of TestCtrl is
begin
 CpuTestProc : process
 begin
 wait until nReset = '1' ;
 CpuWrite(. . .) ;
 CpuRead(. . .) ;
 . . .
 end process ;

 UartTbTxProc : process
 begin

WayPointBlock(SyncPoint) ;
UartSend(. . .) ;

 . . .
 end process ;

 UartTbRxProc : process
 begin

UartCheck(. . .) ;
 . . .
 end process ;
end Test1 ;

Writing Tests

Synchronize processes using
handshaking

One or more processes for each
independent source of stimulus

Interface Stimulus is generated
with one or more procedure calls

Tests are a separate architecture
of TestCtrl (TestCtrl_UartRx1.vhd,
TestCtrl_UartRx2.vhd, …)

14

15

SynthWorks

OSVVM & Writing Tests
Open Source VHDL Verification Methodology

Key Benefits
Works in any VHDL testbench
Mixes well with other approaches (directed, algorithmic, file, random)
Recommended to be use with transaction based testbenches
Readable by All (in particular RTL engineers)

Packages + Methodology for:
Constrained Random (CR)
Functional Coverage (FC)
Intelligent Coverage - Random test generation using FC holes

Low cost solution to leading edge verification
Packages are FREE
Works with regular VHDL simulators

16

SynthWorks

Why Randomize?
Directed test of a FIFO (tracking words in FIFO):

Constrained Random test of a FIFO:

Randomization
Is ideal for large variety of similar items

Modes, processor instructions, … network packets.
Generates realistic stimulus in a timely fashion (to write)
Is more thorough since stimulus is not ordered (not looping)

17

SynthWorks

Randomization in OSVVM

Data1 := RV.RandInt(Min => 0, Max => 15) ;
Data2 := RV.RandInt(0, 15, (5,11)); -- except 5 & 11

Data3 := RV.RandInt((1,2,3,5,7,11));
Data4 := RV.RandInt((1,2,3,5,7,11), (5,11));

Randomize a value within the set (1, 2, 3, 5, 7, 11), except 5 & 11

Randomize a value in an inclusive range, 0 to 15, except 5 & 11

. . . -- ((val1, wt1), (val2, wt2), ...)
Data6 := RV.DistValInt(((1,7), (3,2), (5, 1)));

Weighted Randomization: Value + Weight

Data5 := RV.DistInt ((7, 2, 1)) ;

Weighted Randomization: Weight, Value = 0 .. N-1

By itself, this is not constrained random.

18

SynthWorks

Randomization in OSVVM
Code patterns create constraints for CR tests

Randomize values, transactions, and sequences of transactions

Still uses transactions, so mixes readily with other test approaches

variable RV : RandomPType ;
. . .

StimGen : while TestActive loop

 case RV.DistInt((7, 2, 1)) is -- Select sequence

 when 0 => -- Normal Handling -- Selected 70%
 . . .

 when 1 => -- Error Case 1 -- Selected 20%
 . . .

 when 2 => -- Error Case 2 -- Selected 10%
 . . .

Example: Weighted selection of test sequences (CR)

19

SynthWorks

What is Functional Coverage?
Functional Coverage (FC)

Code that correlates and/or bins items
Observes conditions from test plan happening in simulation
In VHDL / OSVVM, implemented using a package

Item Coverage - FC relationships within a single object
Bin transfer sizes: 1, 2, 3, 4-127, 128-252, 253, 254, 255

Cross Coverage - FC relationships between multiple objects
Has the each pair of registers been used with the ALU?

Test Done =
100 % Functional Coverage + 100 % Code Coverage

Why not just use Code Coverage?
Tells us a line was executed, but does not correlate independent items
 Not necessarily accurate in combinational logic

20

SynthWorks

Why Functional Coverage?

"I have written a directed test for each item in the test plan, I am done right?"
For a small design maybe
However, this assumes coverage, but does not verify it

As complexity grows and the design evolves, are you sure?
When the FIFO size quadruples, does the test still fill it?
Have you covered all possible use modes and orderings?
Did you add all required features?

To avoid missing items, use functional coverage to observe all tests.

Randomization requires functional coverage
Otherwise what did the test do?

21

SynthWorks

Writing Functional Coverage
Testing an ALU with Multiple Inputs:

Mux
8:1

Mux
8:1

Q0

Q7

D0

D7
...... ...

...

SRC1

SRC2

Need to test every register in SRC1 with every register in SRC2

R7
R6
R5
R4
R3
R2
R1
R0

R7R6R5R4R3R2R1R0
SRC2

S
R
C
1

22

SynthWorks

Writing Functional Coverage

Functional Coverage with OSVVM
is as concise as language syntax.

Uniform
Randomization

Covered = Done

Create Cross
Coverage Bins

Collect Coverage
at Transaction

Do Transaction

architecture Test3 of tb is
 shared variable ACov : CovPType ;
begin

 CollectCov : process
 variable RV : RandomPType ; -- randomization object
 variable Src1, Src2 : integer ;
 begin

 ACov.AddCross(GenBin(0,7), GenBin(0,7));

 while not ACov.IsCovered loop

 Src1 := RV.RandInt(0, 7) ;

 Src2 := RV.RandInt(0, 7) ;

 DoAluOp(TRec, Src1, Src2) ;

 ACov.ICover((Src1, Src2)) ;

 end loop ;

 ACov.WriteBin ;
 EndStatus(. . .) ;
end process ;

Coverage Object

23

SynthWorks

Constrained Random is Too Slow!
Constrained random (CR) tests do uniform randomization (VHDL & SV).

Uniform distributions repeat before generating all cases
In general, to generate N cases, it takes O(N*log N) randomizations

"From Volume to Velocity" shows CR tests that are 10X to 100X too slow

The uniform randomization in ALU test requires 315 test iterations.
315 is approximately 5X too many iterations (64 test cases)
The "log N" factor significantly slows down constrained random tests.

R7
R6
R5
R4
R3
R2
R1
R0

R7R6R5R4R3R2R1R0
SRC2

S
R
C
1

5664 1966
45596343
643235 14
64433655
7710910554
83536364
64 174363
54566437

24

SynthWorks

Intelligent Coverage

Randomly select holes in the Functional Coverage
Random walk across functional coverage holes
"Coverage driven randomization" - but term is misused by others

Goal: Generate N Unique Test Cases in N Randomizations
Same goal of Intelligent Testbenches (IT)

R7

R6
R5

R4

R3
R2

R1
R0

R7R6R5R4R3R2R1R0

SRC2

S
R
C
1

1111 1111

11111111

11111111

11111111

11111111

11111111

11 111111

11111111

25

SynthWorks

Intelligent Coverage

Runs 64 iterations
@ 5X faster

architecture Test3 of tb is
 shared variable ACov : CovPType ; -- Cov Object
begin

 CollectCov : process
 variable Src1, Src2 : integer ;
 begin

 ACov.AddCross(GenBin(0,7), GenBin(0,7));

 while not ACov.IsCovered loop

 (Src1, Src2) := ACov.RandCovPoint ;

 DoAluOp(TRec, Src1, Src2) ;

 ACov.ICover((Src1, Src2)) ;

 end loop ;

 ACov.WriteBin ;
 EndStatus(. . .) ;
end process ;

Same test using Intelligent Coverage

Intelligent Coverage
Randomization

Intelligent Coverage Methodology
Write FC
Randomize using FC
Refine

26

SynthWorks

Refinement of Intelligent Coverage

 while not ACov.IsCovered loop

 (Reg1, Reg2) := ACov.RandCovPoint ;

 if Reg1 /= Reg2 then
 DoAluOp(TRec, Reg1, Reg2) ;
 ACov.ICover((Reg1, Reg2)) ;

 else
 -- Do previous and following diagional
 DoAluOp(TRec, (Reg1-1) mod 8, (Reg2-1) mod 8) ;
 DoAluOp(TRec, Reg1, Reg2) ;
 DoAluOp(TRec, (Reg1+1) mod 8, (Reg2+1) mod 8) ;

 -- Can either record all or select items
 ACov.ICover((Reg1, Reg2)) ;
 end if ;

 end loop ;

Refinement can be as simple or complex as needed

Use either directed, algorithmic, file-based or randomization methods.

27

SynthWorks

Weighted Intelligent Coverage
One of a condition, transaction, or sequence may not be enough

A coverage goal specifies number of occurrences for a bin to be covered
Each coverage bin can have a different coverage goal

Weighted selection of test sequences (Intelligent Coverage):

Bin1.AddBins(70, GenBin(0)) ; -- Normal Handling, 70%
Bin1.AddBins(20, GenBin(1)) ; -- Error Case 1, 20%
Bin1.AddBins(10, GenBin(2)) ; -- Error Case 2, 10%

StimGen : while not Bin1.IsCovered loop
 iSequence := Bin1.RandCovPoint ;
 case iSequence is

 when 0 => -- Normal Handling -- 70%
 . . .

 when 1 => -- Error Case 1 -- 20%
 . . .

 when 2 => -- Error Case 2 -- 10%
 . . .

Generates this
exact distribution

Set Coverage Goals

Select sequence

28

SynthWorks

OSVVM is More Capable
Functional Coverage is a data structure

Incremental additions supported
Use any sequential construct (loop, if, case, …)
Use generics to make coverage conditional on test parameters

TestProc : process
begin
 for i in 0 to 7 loop
 for j in 0 to 7 loop
 if i /= j then
 -- non-diagonal
 ACov.AddCross(2, GenBin(i), GenBin(j));
 else
 -- diagonal
 ACov.AddCross(4, GenBin(i), GenBin(j));
 end if ;
 ...

29

SynthWorks

Coverage Closure
Closure = Cover all legal bins in the coverage model

Intelligent Coverage
Write FC.
Only selects bins that are not covered in the FC
Closure depends on running test long enough.
Tests partitioned based on what coverage we want in this test.

Constrained Random
Write CR. Write FC.
Closure depends on CR driving inputs to FC.
After simulation, analyze FC
Prune out tests that are not increasing FC
Tests partitioned based on modified controls, constraint sets, and seeds
Must merge FC database for all tests

Intelligent Coverage is less work than Constrained Random

30

SynthWorks

Self-Checking
Self-Checking = compare results vs. known good results

Self-Checking by two cooperating interfaces

DUT: MemIOGeneration Process

UartSend(UTR,X"4A")

Check Process

CpuRead(CR, UD, X"4A")

Self-Checking methods:

Embedding Data

Reference Model

Compare against saved "Golden" results (text file or waveform)

31

SynthWorks

Scoreboards & Self-Checking
A Scoreboard is a data structure to facilitate self checking.

FIFO of Expected Values
Methods to compared a received value with expected value
Method to track error count

Essential for transport of data (networks) with little transformation

DUT
Output
Monitor

Scoreboard

Stimulus
Generator

T

A Scoreboard may have:
Support to transform expected value to received value
Support for out of order execution
Support for dropped packets
Generics to facilitate parameterization

32

SynthWorks

Additional Pieces of Verification

Synchronization Utilities
Used to synchronize independent processes (threads) of code

Memory Modeling
Large memories need space saving algorithm
Data structure needs to be easy to use and help readabity

Reporting Utilities

33

SynthWorks

Dispelling FUD

Randomization Requires a Solver
Intelligent coverage is O(logN) faster than a solver = more balanced

FC and CR require language syntax and OO
FC and CR only require data structures
Packages + protected types work as well as or better

TLM / BFMs Require OO + Factory Class
TLM / BFMs easier to implement concurrently - just like RTL code.
Architectures are the Factory Class of concurrent programming

Verification Requires Fork & Join
Use the concurrency built into VHDL.
Use entity + architecture for bundling
Use separate processes for independent handling of sequences
Use handshaking to synchronize independent processes
Just like RTL

SynthWorks VHDL Training
Comprehensive VHDL Introduction 4 Days

http://www.synthworks.com/comprehensive_vhdl_introduction.htm
A design and verification engineer's introduction to VHDL syntax, RTL
coding, and testbenches. Students get VHDL hardware experience with
our FPGA based lab board.

VHDL Coding for Synthesis 4 Days
 http://www.synthworks.com/vhdl_rtl_synthesis.htm
 Learn VHDL RTL (FPGA and ASIC) coding styles, methodologies, design

techniques, problem solving techniques, and advanced language
constructs to produce better, faster, and smaller logic.

SynthWorks offers on-site, public venue, and on-line classes. See:
http://www.synthworks.com/public_vhdl_courses.htm

VHDL Testbenches and Verification 5 days - OSVVM bootcamp
 http://www.synthworks.com/vhdl_testbench_verification.htm

Learn the latest VHDL verification techniques including transaction-
based testing, bus functional modeling, self-checking, data structures
(linked-lists, scoreboards, memories), directed, algorithmic, constrained
random and intelligent coverage, and functional coverage.

35

SynthWorks

VHDL Testbench Summary
VHDL support all important testbench features

TLM, CR, FC, IT, Reuse, Interfaces, Concurrency and Synchronization,
Scoreboards, Memory Models

Better than SystemVerilog / 'e' Capabilities
Functional Coverage - Sequential, Incremental, Conditional
Intelligent Testbenches built-in
FC, CR, and IT that can be refined with code
Extensible, just add to the packages
Mixed environments (directed, algorithmic, file, CR, IT)
Simple and Readable by All (Verification and RTL Engineers)
Faster Coverage Closure
Faster Simulations - No redundant stimulus (log N) and no solver

SystemVerilog?
Less capable, slower, requires a specialist , alienates RTL engineers

36

SynthWorks

Going Further / References

"From Volume to Velocity" by Walden Rhines of Mentor Graphics,
Keynote speech for DVCon 2011.

See http://www.mentor.com/company/industry_keynotes/

Jim's OSVVM Blog: www.synthworks.com/blog/osvvm

OSVVM Website: www.osvvm.org

Coverage Package Users Guide and Random Package Users Guide

Getting the packages:
May be already installed in your simulator's osvvm library
http://www.osvvm.org/downloads
http://www.synthworks.com/downloads

